
Requirements debt: causes, consequences, and
mitigating practices

Viviane Duarte Bonfim
Community University of Region from Chapecó

Chapecó, Brazil
Federal University of Santa Catarina

Florianópolis, Brazil

Fabiane Barreto Vavassori Benitti
Federal University of Santa Catarina

Florianópolis, Brazil
fabiane.benitti@ufsc.br

viviane.duarte@posgrad.ufsc.br

Abstract—Background: Agile development was an
important initiative that changed the traditional way of
developing software into an agile development process.
Action is more important than the process in the agile
world, and requirements and documentation do more harm
than good. However, when developing requirement
engineering activities inadequately, they motivate the
emergence of problems that directly affect the development,
which can incur requirements debt. Aim: This study
investigates the causes of requirements debt that incur
requirements debt and actions that can minimize and or
avoid them inside the context of agile software development.
Method: To fulfill the objective, we performed qualitative
research, supported by data analysis suggested by
Grounded Theory, with 19 subjects in 13 agile organizations
at a national and international level in different segments.
Results: At the end of this study, we proposed a theoretical
model containing the requirements debt causes and their
effects and practices that might mitigate them, and the
relation between these three factors.

Keywords - Agile Requirements Engineering; Agile
Software development; Requirements Debt.

I. INTRODUCTION
The current software development scenario is characterized

by the broad adoption of agile methodologies [1] because the
Agile Development Software (ADS) is, more and more, gaining
space due to its crescent popularity and the possibility of quick
and continuous deliveries [2]. It speeds up the development and
adapting to the changes along the developing process. These
changes suggest a flexible approach to software development,
including Requirements Engineering (RE) [3].

Traditionally, the RE activities are developed separately
from the development and design process and are documented
in specific artifacts, promoting a formalization during this
process [4]. In agile Requirements Engineering, the
requirements are defined gradually along with the interaction

DOI: 10.18293/SEKE2022-114

between stakeholders and the developing team, without meeting
the same formalization and, therefore, are not always adequately
documented [4] in contrast to what the RE recommends [5],
promoting a lack of standardization in the activities that
comprise it [6].

The absence of a good requirements process may cause the
RE conduction steps to fail, generating consequences such as
misunderstood, omitted, ill-defined, and poorly specified
requirements, including technical debts. Cunningham originally
proposed in 1992 the approach as a metaphor for the term
Technical Debt (TD), referring to the coding practices intending
to help developers monitor the immature software code. This
metaphor is related to software failure, generally motivated by
development shortcuts or to the commitments made by
developers to meet an urgent demand, convenient in the short
term. With time, this concept evolved to other development
stages, manifesting itself at the Requirements Engineering stage,
also known as Requirements Debt1 [8]. The requirements debt
corresponds to failures in the requirements specification,
characterizing the distance between the desired specification of
requirements and the actual implementation of these
requirements in the system [9]. A study performed by Ernest
[10] initially revealed the requirements debt concept frequently
adopted by researchers that address technical debt. These debts
are still poorly understood by organizations, thus hindering the
perception of their causes and their consequences. Hence, it
becomes complex to prevent and treat them [11].

This research investigates the causes of the generated
requirements debt, their consequences, and their mitigation
actions. This study aims to allow agile organizations to
understand better the scenario involving requirements debt and,
in this way, mitigate them, improving their practices, aiming to
prevent these debts and reduce the cost of their payment [12].

This article presents in section II the related works and, in
section III, the research method adopted. Section IV presents the
proposed theoretical model. Section V describes the results that
supported the research. Section VI presents the threats to the
validity of the research. Section VII addresses the conclusions,
limitations of the study, and suggestions for future work.

1 The term initially proposed by [10] is characterized by technical debt in
requirements, but recent studies address it as requirements debt [13], which this
article adopts.

II. RELATED WORK
In the literature, several works involve research to

investigate the conceptualization of technical debts in general,
such as the work prepared by Freire et al. [12]. The researchers
used data from the InsighTD project, which includes a set of
surveys aimed at studying technical debts in Software
Engineering, to investigate preventive actions that, if adopted,
can curb the occurrence of technical debts and the difficulties in
adopting these actions. The study proposed by Ramač et al. [14]
demonstrates the understanding of the TD concept, together with
data characterizing the causes and effects of TD in the
information technology (IT) industry located in Serbia, obtained
from 93 professionals.

However, few studies have investigated the requirements
debt, such as the work developed by Lenarduzzi and Fucci [13].
The research carried out by Lenarduzzi and Fucci [13] presented
a definition of requirements debt (ReD) that includes the debt
incurred during the identification, formalization, and
implementation of requirements. Lenarduzzi and Fucci [13]
proposed three types of requirements debt: Type 0: Incomplete
user needs; ReD Type 1: Requirement smells; ReD Type 2:
Incompatible implementation. The authors suggested concepts
and strategies for detecting, quantifying, and reimbursing each
type.

The research developed by [13] is the only literature found
that explores requirements debt and was peer-reviewed.
However, they do not examine the evidence that causes the
requirements debt, their effects, and strategies to prevent them.
In this sense, no studies aim to investigate and identify the causes
of requirements debt and their consequences and the practices
that can mitigate these debts, specifically in the context of agile
development, evidencing the need to carry out studies in this
area.

III. RESEARCH METHOD

For the development of this research, an empirical study was
carried out, following a qualitative approach guided by the
Grounded Theory (GT) data analysis techniques supported by
Charmaz's perspective [15]. Fig. 1 displays the flow of
development of the research.

Figure 1. The process carried out during the research

2 Free and Clarified Consent https://forms.gle/uYFaoptYoAopKeuX6.

The choice for GT is justified by its acceptance in the area of
Software Engineering [16], as it facilitates the investigation of
social and human aspects [17], and even being used to support
data analysis, it results in consistent and valuable explanations
about the phenomenon found [18], motivating the choice for this
approach.

A. Research Question

This research aims to identify the causes that generate
requirements debt and their effects, aiming at the activities of
Requirements Engineering in agile organizations and actions
that can mitigate the causes of these debts.

In this way, after the conclusion of the GT, it is possible to
answer the following research questions:

RQ 1. What are the causes of requirements debt found in
agile organizations?

RQ 1.1 What are the consequences of requirements debt?

RQ 2. What practices do agile organizations employ that can
minimize requirements debt?

B. Data Collection

The analyzed data comes from the reports of 19
professionals in 13 agile organizations from 5 different
countries (Brazil, France, Portugal, United Arab Emirates, and
Belgium).

The research participants were selected from the
researchers' contact networks or by indications from the
companies' employees. The participants were contacted via e-
mail, considering different profiles of employees, such as area
of activity and the segment of companies, demonstrating
through this diversity that theoretical sampling was achieved in
the study, as shown in Table I. After the company and
employees agreed to participate in the research, both filled out
the consent form2, and data collection took place.

It is relevant to mention that the participants did not need to
be familiar with the term technical debt because if this aspect
occurred during the interview, the researcher had the means to
contextualize it to the participants.

The two instruments used for data collection were online
interviews and a questionnaire. The chosen interview is semi-
structured [19], as it has a previously defined script to help the
interviewer in its conduction, yet, it is also supported by open
questions [20]. The questionnaire3 preparation considered the
questions adopted in the interview. It was available through a
form, and a single participant answered it. The participant
belonged to a company located in Portugal. Such was the
chosen process due to its availability and preference.

The interviews and questionnaire addressed aspects related
to Requirements Engineering and Technical Debt in agile
organizations and were recorded, with the participants'
permission, followed by their transcripts, totaling 171 pages and

3 Questionnaire: https://forms.gle/nRoMnSGBn1ijszQ8A.

approximately ninety thousand words between interviews and
questionnaire.

It is noteworthy that the data collection and analysis ended
only when the research reached theoretical saturation (when no
new data emerged to add to the study [15]).

TABLE I. PROFESSIONALS PARTICIPATING IN THE RESEARCH

C. Data Analysis

In the data analysis, coding techniques were used based on
the Grounded Theory (GT) approach, supported by Charmaz
[16], consisting of two steps for data coding: initial and focused.
The GT assisted in the coding and data interpretation, and the
MaxQda tool (https://www.maxqda.com/) supported
performing the data analysis.

1) Initial Coding
Initial coding is the first step of data analysis following the

constructivist approach [21], in which data are carefully
examined, with line-by-line or segmental analysis of all
transcribed material resulting from data collection [15]. With
each interview or questionnaire, the transcription of the new
data was coded and constantly compared with existing data.
Table II presents segments giving rise to the different codes
created, as reported by the research participants. We presented
just a few examples of coded segments to support and represent
the initial coding process.

TABLE II. EXAMPLES OF PARTICIPANT REPORTS

When a particular segment was selected, some related
concept was verified. The new segment was associated with the
existing code according to its similarity, proximity, and
relationship to the created code. If it did not relate to an existing
one, the analyzed segment resulted in a new code—all codes
aimed at the software development process and related to
Requirements Engineering and Technical Debt.

After several sessions of iteration and comparison between
the data, at the end of the initial coding, 2599 coded segments
were obtained, extracted from the interviews and questionnaire,
and grouped into 27 codes, shown in Table III. Next to each
code is its incidence (number of coded segments related to a
given code).

TABLE III. CODES LIST

2) Focused Coding

According to the GT approach used, focused coding is the
second stage of the coding process. In this step, the researchers
analyzed the most relevant initial codes and organized them into
subcategories and provisional categories that originated the
final categories after refinement sessions. The grouping into
categories and subcategories occurred according to identified
similarities and differences [15], mapped and refined during
comparative cycles in the data analysis, establishing
connections between the categories and subcategories
distributed in the following contexts: Technical Debt,
Requirements Engineering, Agile Methodologies of
development [22].

As a result, the researchers identified the main category of
the research, represented by “Factors that impact Requirements
Engineering” and its three final categories: “Causes that
Generate Requirements Debt”; “Consequences that
Characterize Requirements Debt”; and “Practices that can

reduce and/or address requirements debt.” The categories have
a set of subcategories that reflect the evidence of each of them.
Tables IV, V, and VI show the subcategories. We chose this
color model to match the theoretical model’s subtitles in section
IV. This evidence summarizes the reports verbalized by the
participants during the data collection sessions and the
interpretations made by the researchers and demonstrates
perceptions conditioned to causes, consequences, and practices.

TABLE IV. “CAUSES THAT GENERATE REQUIREMENTS DEBTS”
- CATEGORY, SUBCATEGORIES AND EVIDENCES

TABLE V. “CONSEQUENCES THAT CHARACTERIZE
REQUIREMENTS DEBTS” - CATEGORY, SUBCATEGORIES AND

EVIDENCES

TABLE VI. “PRACTICES THAT CAN REDUCE AND/OR ADDRESS
REQUIREMENTS DEBTS” - CATEGORY, SUBCATEGORIES AND

EVIDENCES

The focused coding, when completed, made it possible to

build the theoretical model that underlies the entire study
through the inductive/deductive process.

IV. THEORETICAL MODEL

The GT's coding theory supports the theoretical model
presented in Fig. 2 and portrays the result of data analysis.
During the elaboration of the theoretical model, it considered
some findings that emerged from the data, supported by the
analytical resources of the MaxQda tool.

Figure 2. Proposed Theoretical Model

Three factors (categories) that impact Requirements
Engineering characterize the model. The categories appear in
three columns: Consequences highlighting the requirements
debt themselves in the first column. In the central column are
the causes for requirements debt, and in the third column, the
practices that can minimize the causes and, consequently, the
requirements debts.

The arrows employed define the relationship between these
factors, indicating the causes that incur requirements debt and
which practices can minimize or avoid them and consequently
the debts. The option for the different styles and colors of the
arrows intends to facilitate the understanding and legibility of
the theoretical model.

A. Data Validation

The research data validation occurred with the participants
by completing a form4 after elaborating the theoretical model.
The issues involved in the form are associated with the three
factors that impact Requirements Engineering: Causes of
requirements debt, their consequences, and the practices that
can mitigate these debts. Of the 19 research participants, 10
participated in data validation5, as some had left the companies
they worked for at the time of data collection, and the other
participants did not complete the validation form.

V. RESULTS

According to the model proposed in section IV, we
identified eight leading causes that generate requirements debt,
seven consequences that characterize the emergence of debts,
and 16 possibilities of practices that can prevent and or treat
these causes and consequently curb requirements debt.

After concluding the research, we believe that the
theoretical model answered the research questions, establishing
a connection between the categories, subcategories, and
evidence resulting from the data analysis, unifying them,
allowing a better understanding and identification of the causes
that incur requirements debt and alternatives to minimize them.

The results obtained can help companies understand the
causes of debt requirements, their effects, and what actions they
can take to mitigate such debts. In the following sections, the
participants' reports exemplify at least one cause, one
consequence, and one practice due to space restrictions.

A. RQ 1. What are the causes of requirements debts found
in agile organizations?

Among the observed causes for requirement technical debt,
the most reported cause was “Absence of requirements”,
evidenced by 13 participants. According to the mentions, the
"absence of requirements" is a cause of requirements debt,
perceived after delivery. Such debts point out that during the
requirements analysis stage, the teams should refine a particular
request to prevent identifying the absences only after delivery,
as reported by PC1. According to the interviewees, the lack of
understanding or initial alignment may reflex this cause.

 “The absence of requirements causes a lack of adherence
to the developed software. When this occurs, it is necessary to
return to the requirements process to correct them, update
them, and the following phases of the development process. This
absence generates rework and additional cost, making the
software development process more complex”6. – PC1, Scrum
Master.

4Example of data validation:
https://www.survio.com/survey/d/P7H8V2F7G2T4F7A4E

5 Data Validation Results:
https://drive.google.com/file/d/14m_cvUfuto8hrWJ1AD5_o0bFs_Xj7kd8/vie
w?usp=sharing

B. RQ 1.1. What are the consequences of Requirements
Debt?

We considered the consequence most frequently mentioned
by the participants. The main one identified: “They do not
develop everything – Accumulation or excess of the backlog
over time,” with 10 citations. The consequence mentioned
makes management difficult, compromising the requested
requirements, and often, no practice is adopted to facilitate
monitoring. According to research participants, this
accumulation occurs due to changes in priorities, as highlighted
by PJ, since, with the backlog growing disproportionately, some
requirements may be disregarded and never developed.

“We did not respond to everything that was requested. Many
things that stay in the backlog are due to other requests, and
they are priorities related to those in the Backlog”. - PJ,
Software Engineer.

C. RQ 2. What practices do agile organizations employ that
can minimize requirements debt?

Among the practices that can mitigate the requirements
debt, we present the most expressive for the study, as reported
by the participants: “Managing the Requirements, deliveries,
delays, backlog, and progress,” revealed by 15 participants. As
highlighted in the interviews, the practice of “Managing the
Requirements, deliveries, delays, backlog, and progress” allows
controlling and monitoring the progress of requirements
through their status, such as if they are already met, if they need
development, and if they are late. It is also possible to track
what is in the backlog, how long a particular demand or
requirement remains there, and the requirements awaiting
development. Some companies mentioned that to manage their
requirements, they use specific tools because it allows them to
explore the visualization of the status of each
functionality/requirement through representative graphics, as
mentioned by PJ.

“An Agile Board monitors all the steps: What is in the
backlog, what is under analysis, awaiting development, in
development, awaiting review, in review, awaiting test, in test,
ready. Each of the requirements is in one of these blocks. In
addition, we have the Burndown where we verify and follow up
the deliveries concerning the sprint time”. Agile Board
integrates with Redmine. - PJ, Software Engineer.

VI. THREATS TO VALIDITY

There were mechanisms adopted in this study to mitigate
some threats, highlighting some points described below.
Focusing on construction validity, during the development of
the study, we sought to explore the data collection instruments
(interview and questionnaire) with participants from different

6 It is noteworthy that in the GT, transcripts must occur in full according to the
participant´s speech. However, to provide better compression, there were some
adaptations without changing context due to the article´s language.

countries and segments to absorb a significant set of data until
data saturation occurred. When a participant did not understand
a term or question in the interviews, the researcher was
available to clarify. The same happened for questions related to
filling the questionnaire out.

Considering the internal validity, the researcher's
interpretation during the data coding was possibly not as
faithful to the portrayed data from the interviews and
questionnaire as it should be. This interpretation could reflect
on the study´s results, even when the researchers reanalyzed the
data when any doubts would arise. To minimize possible
limitations, the research participants validated the results of the
data analysis. However, of the nineteen research participants,
ten participated in the validation, which can also characterize a
threat to validity. A systematic study is underway to mitigate
the threat regarding data validation. Said study will support
validation and potentialize the obtained in this research.

VII. CONCLUSIONS AND FUTURE WORK

This article presented a study on the state of practice
regarding the Requirements Debt involving 19 participants
from agile organizations in different segments located in 5
countries. The research contemplated a qualitative approach
supported by Grounded Theory data analysis techniques.

This study made it possible to observe that organizations do
not have mechanisms to identify and recognize their
requirements debts, and as a consequence, they do not manage
such debts, making their mitigation difficult. To help
organizations minimize these weaknesses, the theoretical model
we propose synthesizes the results of this research. The
theoretical model demonstrates the relationship between the
identified categories and evidence, allowing agile organizations
to recognize which causes generate requirements debts and their
incurred debts for a better understanding and ways to minimize
them by adopting the recommended practices.

In future work, we intend to provide a library of practices
through a platform, suggesting a set of practices that help agile
organizations minimize or mitigate requirements debt,
regardless of the adopted process. We also mean to provide
ways for companies to recognize the causes of requirements
debt and their already existing debts to facilitate the
implementation of practices.

REFERENCES
[1] N. Rios, M. Mendonça and C. Seaman. “Causes and effects of the

presence of technical debt in agile software projects”. Twenty-fifth
Americas Conference on Information Systems, AMCIS, 2019.

[2] K. Elghariani and N. Kama. “Review on agile requirements
engineering challenges”. 3rd International Conference on
Computer and Information Sciences (ICCOINS), August. 2016.
DOI: 10.1109/ICCOINS.2016.7783267.

[3] E. Schön, D. Winter, M. J. Escalona and J. Thomaschewski. “Key
challenges in agile requirements engineering”. International
Conference on Agile Software Development: Agile Processes in
Software Engineering and Extreme Programming, pp. 37-51, April
2017.

[4] E. Bjarnason, K. Wnuk and B. Regnell. “A case study on benefits
and side-effects of agile practices in large-scale requirements
engineering.” AREW '11: Proceedings of the 1st Workshop on
Agile Requirements Engineering, pp. 1-5, July 2011. DOI:
https://doi.org/1.1145/2068783.2068786

[6] H. F. Soares, N. S. R. Alves, T. S. Mendes, M. Mendonça and R.
O. Spinola. “Investigating the link between user stories and
documentation debt on software projects”. International
Conference on Information Technology - New Generations, April
2015. DOI: 10.1109/ITNG.2015.68.

[7] W. Cunningham. “The WyCash portfolio management system”.
Proc. OOPSLA, October 1992.
DOI: https://dl.acm.org/doi/pdf/10.1145/157710.157715

[8] P. Avgeriou, P. Kruchten, I. Ozkaya and C. Seaman. “Managing
Technical Debt in Software Engineering”. Dagstuhl Seminar
16162, January 2016. DOI: 10.4230 / DagRep.6.4.110.

[9] Y. Guo, R. O. Spínola and C. Seaman. “Exploring the costs of
technical debt management – a case study”. Empirical Software
Engineering, vol. 21. ed. 1. pp. 159-182, 2016. DOI:
10.1007/s10664-014-9351-7.

[10] N. A Ernst. “On the role of requirements in understanding and
managing technical debt”. Third International Workshop on
Managing Technical Debt (MTD), June 2012. DOI:
10.1109/MTD.2012.6226002.

[11] W. N. Behutiye, P. Rodríguez, M. Oivo and A. Tosun. “Analyzing
the concept of technical debt in the context of agile software
development: A systematic literature review”. Information and
Software Technology, vol. 82, pp. 139-158, February 2017. DOI:
https://doi.org/10.1016/j.infsof.2016.10.004.

[12] S. Freire, N. Rios, M. Mendonça, D. Falessi, C. Seaman, C. Izurieta
and R. O. Spínola. “Actions and impediments for technical debt
prevention: results from a global family of industrial surveys”. SAC
'20: The 35th ACM/SIGAPP Symposium on Applied Computing,
pp. 1548–1555, March 2020. DOI:
https://doi.org/10.1145/3341105.3373912.

[13] V. Lenarduzzi and D. Fucci. “Towards a holistic definition of
requirements debt”. ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement (ESEM), vol 1,
pp. 1-5, September 2019. DOI: 10.1109/ESEM.2019.8870159.

[14] R. Ramač, V. Mandić, N. Taušan, N. Rios, M. G. Mendonça, C.
Seaman and R. Oliveira Spinola. “Common causes and effects of
technical debt in Serbian IT: InsighTD survey replication”. 46th
Euromicro Conference on Software Engineering and Advanced
Applications (SEAA), August 2020. DOI:
10.1109/SEAA51224.2020.00065.

[15] K. Charmaz. “Constructing Grounded Theory: A Practical Guide
through Qualitative Analysis”. Sage Publications, 2006.

[16] K. Madampe, R. Hoda, J. Grundy and P. Singh. “Towards
understanding technical responses to requirements changes in agile
teams”. IEEE/ACM 42nd International Conference on Software
Engineering Workshops (ICSEW), pp 153-156, June 2020. DOI:
https://doi.org/10.1145/3387940.3392229.

[17] R. Hoda and J. Noble. “Becoming agile: A grounded theory of agile
transitions in practice”. IEEE/ACM 39th International Conference
on Software Engineering (ICSE), May, 2017.
DOI: 10.1109/ICSE.2017.21.

[18] R Hoda. “Decoding Grounded Theory for Software Engineering”.
IEEE/ACM 43rd International Conference on Software
Engineering: Companion Proceedings (ICSE-Companion), May
2021. DOI: 10.1109/ICSE-Companion52605.2021.00139.

[19] W. C. Adams. “Handbook of practical program evaluation:
Conducting Semi-structured interviews”. 3. Ed, Chapter Sixteen,
pp. 365-376, 2010. ISBN: 978-0-47052247-9.

[20] J. Melegati, A. Goldman, F. Kon and X. Wang. “A model of
requirements engineering in software startups”. Information and
Software Technology, vol. 109, pp. 92-107, 2019. DOI:
https://doi.org/10.1016/j.infsof.2019.02.001.

[21] K. Charmaz. “Constructing Grounded Theory. 2nd., 2014.
[22] P. Bourque, R. E Fairley. “Swebook. Guide to the Software

Engineering”. Version 3.0. IEEE Computer Society, 2014.

