
Evaluating Software Developers’ Acceptance of a
Tool for Supporting Agile Non-Functional

Requirement Elicitation

Felipe Ramos§, Antônio Pedro¶, Marcos Cesar¶, Alexandre Costa§,
Mirko Perkusich¶, Hyggo Almeida‡ and Angelo Perkusich‡‡

Intelligent Software Engineering Group, Federal University of Campina Grande,
Campina Grande - PB, Brazil, Zip Code 58429-140

§CAPES Foundation, Ministry of Education of Brazil, Brasilia - DF, Zip Code 70.040-020
§{feliperamos, antonioalexandre}@copin.ufcg.edu.br,

¶{antonio.abreu, marcos.cesar, mirko.perkusich}@embedded.ufcg.edu.br
‡hyggo@dsc.ufcg.edu.br, ‡‡perkusic@dee.ufcg.edu.br

DOI reference number: 10.18293/SEKE2019-107

Abstract—Due to the need for flexibility to requirements
changes, agile software development methods have been attract-
ing the attention of academic and industrial domains. Unlike
traditional approaches, agile methods focus on the rapid delivery
of business value to customers through empirical and incremen-
tal development processes. Despite being effective in delivering
quality functional requirements, agile practices generally neglect
non-functional requirements until the later stages of software
development. However, neglecting non-functional requirements
during requirements analysis can lead to project failures. In this
paper, we present the NFRec tool, which aims to support software
developers in the elicitation of non-functional requirements in the
context of agile software development. Additionally, we report the
results from a case study to evaluate the acceptance of the NFRec
tool from the point of view of software developers of four projects
from a Brazilian software company. To gather information about
the tool acceptance, we applied a questionnaire based on the
indicators from the Technology Acceptance Model. Overall, the
four teams considered the NFRec tool useful and easy to use for
supporting the management of non-functional requirements in
agile projects.

Keywords—Non-functional requirements; agile requirement en-
gineering; supporting tool; empirical study; technology acceptance.

I. INTRODUCTION

Since the declaration of the Agile Manifesto in 2001,
academic [8] and industrial [16] communities have devoted
considerable attention to agile software development (ASD)
methods, such as Scrum and eXtreme Programming. One of
the key aspects of the ASD is to rapidly adapt to volatile
requirements [8], following a development process that places
a great emphasis on frequent delivery of business value for
customers [8].

Although agile practices are considered effective in the
delivering of valuable functional requirements (FRs) [14],
non-functional requirements (NFRs) are commonly neglected
until the later stages of software development [14]. However,
neglecting NFRs can lead to software failure [2], since NFRs
are often more critical to determine the perceived success or
failure of a software product than FRs [9].

By addressing this problem, some studies proposed tech-
niques to support the NFR elicitation in the agile context [10],
[11], [12], [13]. Maiti and Mitropoulos [12], [13] presented
a methodology to collect NFRs metadata from software re-
quirements artifacts such as documents and images available
in the initial stages of projects. Farid et al. [10], [11] proposed
a solution based on decision trees to predict NFRs from future
iterations of agile projects based on the metadata collected
with the methodology proposed in Maiti and Mitropoulos [12],
[13]. However, to the best of our knowledge, none of these
works proposed the use of historical data of previous projects
to provide suggestions of NFRs for ongoing ones. Additionally,
there is a lack of empirical evaluations of proposed solutions
in real industrial environments.

In our previous work [15], we proposed a non-functional
requirement recommendation system (RS) for Scrum-based
projects, which is based on the analysis of information from
past projects. As a result, our solution achieved a recall rate of
up to 81%, showing the feasibility of automating the definition
of NFRs through historical data of Scrum-based projects. To
allow the applicability of the proposed recommendation system
on industrial environments, we developed a tool based on
an improved version of the solution presented in [15], called
NFRec.

In the current paper, we focus on the empirical assessment
of the NFRec tool and report the results obtained through
a case study to evaluate its acceptance in a real industrial
environment. For matters of validation, our work focus on
Scrum, which is the most popular agile method [17]. As a
result, the subjects of the case study considered the NFRec
tool useful and easy to use for supporting the management of
non-functional requirements in agile projects.

This paper is organized as follows. Section II presents a
background and a motivation to use a supporting tool for
NFRs elicitation in ASD context. Section III shows the NFRec
tool. Section IV presents details about the empirical evaluation.
Section V discusses the threats to validity. Finally, Section VI
details our conclusions and perspectives for future works.



II. BACKGROUND AND MOTIVATION

Non-functional requirements play a key role in the suc-
cessful development of software products [2]. Moreover, they
are considered as a factor of differentiation among software
products that present similar FRs [1].

In this sense, Bourimi et al. [3] proposed a framework that
aims to conceptually impose the early consideration of NFRs,
by considering the adoption of the stakeholder of NFRs in the
Scrum team. In contrast, Farid [7] proposed a framework for
modeling NFRs in the context of ASD.

Although the presented techniques provide a means for
identifying NFRs on agile projects, there is still room for im-
provement. For example, solutions such as the ones proposed
by Bourimi et al. [3] and Farid [7] present only a conceptual
reinforcement or/and the addition of artifacts and roles in the
agile process. Therefore, no solutions are proposed to support
automated NFR elicitation. In contrast, solutions presented
by Farid et al. [10], [11] and Maiti and Mitropoulos [12],
[13] require that project documents and images are available
on early stages of the software development, which is not
common when dealing with ASD. The presented needs have
been considered in the NFRec tool.

III. NFREC TOOL

In this section, we present the NFRec tool, which aims
to support developers in the early elicitation of NFRs during
the Sprint Planning Meetings1. NFRec comprises the following
two activities: (i) Structuring of Project Information; and (ii)
NFR Recommendation.

A. Structuring of Project Information

To enable the generation of the NFRs recommendations, it
is necessary to structure the projects’ information to guarantee
the retrieval of information by the recommendation system. In
the NFRec tool, user stories and project profiles are structured
based on the assignment of categories and tags.

The first activity accomplished in the NFRec tool by Scrum
teams is to create project profiles based on the assignment
of tags referring to the five factors that directly affect the
definition of NFRs [15], i.e., platform (e.g., web, mobile,
embedded, desktop, etc.), project domain (e.g., health, banking,
etc.), project objective (e.g., product or prototype), software
architecture (e.g., client-server, MVC, multilayered, etc.), and
technology tags, which represent basic technologies for the
development of a software product (e.g., programming lan-
guage, database, etc.). In Figure 1, we present an example
of a structured project profile created in the NFRec tool. The
project is from the domain Development Tools (1), its objective
is to develop a Product (2), the software architecture is Client-
server (3), the platform is Web (4) and the technologies used
are the programming languages Java and JavaScript (5) and
the frameworks Angular and Spring Boot (6). We highlight
that previously stored tags must be reused by Scrum teams to
avoid data inconsistencies.

Besides project profiles structuring, all user stories (USs)
specified in the NFRec tool must be categorized to enable the
retrieval of information by the RS. Therefore, during the Sprint

1Sprint Planning Meeting is an event of the Scrum in which the Scrum
team plans the work to be performed in the Sprint.

Fig. 1: Example of a structured project profile created in the
NFRec tool

Planning Meetings, developers use the NFRec tool to create
and store USs, which are classified by a category (module)
and a subcategory (operation) that indicate the purpose of the
FR specified by the US. In Figure 2, we present an example
of a structured user story created in the NFRec tool. The
US is classified with the module Registration (1) and the
operation Retrieve data (2). We highlight that previously stored
categories (i.e., modules and operations) must be reused by
development teams to avoid data inconsistencies.

B. NFR Recommendation

For each US defined by the development team, the NFRec
tool recommends a list of NFRs based on historical data



Fig. 2: Example of a structured user story created in the NFRec
tool

analysis. NFRs are represented in the tool by a type, an
attribute, and a sentence. The classification with type and
attribute follows the indications presented by Mairiza et al.
[9]. Additionally, NFR sentences are written following the
indications presented by Eckhardt et al. [5], [6].

In Figure 3, we present an example of NFR recommenda-
tions presented in the NFRec tool, in which three NFRs are
suggested for a US of the module Registration (4) and the op-
eration Retrieve data (5). In the example, the developers have
already accepted/considered one of the three recommendations

Fig. 3: Example of a NFR recommendation presented in the
NFRec tool

(6), a NFR of type security (1), attribute access control (2), and
sentence “The system must provide the capability for users to
see just the information they have permission to access.” (3).

By using the tool, developers can visualize suggestions
of NFRs for each US of current or future Sprints. Thus,
NFRs can be considered early in the software development
process, mitigating the risk of negligence with non-functional
requirements resulted from agile practices.

IV. EMPIRICAL EVALUATION

To evaluate the practical use of the NFRec tool, we
conducted a case study in four ongoing Scrum-based projects
from a Brazilian software company. We intend to: (i) assess
the acceptance of the NFRec tool by agile software developers;
(ii) evaluate the precision of generated recommendations.

A. Case Study Design

We performed an embedded case study [18] in which each
project was considered a unit of analysis and each development
team the subject of study. This step of the research lasted a
month and each project executed two Sprints of 15 days during
this period. Meanwhile, we collect information from different
recommendation scenarios, and hence, we consider a sufficient
period to answer the research questions.

The overall objective of the case study is to evaluate
the cost-benefit of the NFRec tool from the perspective of
development teams, regarding the support of non-functional
requirements management. To accomplish that, we formulate
the following research questions (RQs):

• RQ1: is the NFRec tool useful to assist in eliciting
non-functional requirements in Scrum-based software
projects?

• RQ2: is the cost to use the NFRec tool in Scrum-based
software projects acceptable?

• RQ3: what is the precision of the recommendations
of the NFRec tool?



Therefore, we consider the cost-benefit of the NFRec tool
worthwhile if the questions are positively answered.

As previously stated, we consider four software projects as
study analysis units, referred as Project A, Project B, Project
C and Project D. All of them consisting of Web information
systems with the following scopes:

• Project A: development of a system with a cloud ser-
vice and a Web client to enable independent or shared
writing of poetry. It is composed of two developers;

• Project B: development of a Web client for generating
graphics resources such as badges and business cards.
It is composed of three developers;

• Project C: development of a system with a cloud
service and a Web client to support the management of
training projects through the management of students’
activities and schedules, selections of participants to
projects, etc. It is composed of five developers;

• Project D: development of a system with a cloud
service and a Web client to assist the building and
executing of Bayesian Networks. It is composed of
five developers.

Prior to the case study, all projects performed requirements
management during the Sprint Planning Meetings using a tool
without NFR recommendation. Therefore, they did not perform
any direct activity to define NFRs through the tool. They
described them as acceptance criteria, DoD items, functional
requirements, failures identified by test cases, etc.

To gather data for evaluating the acceptance of the NFRec
tool, we apply a questionnaire based on the Technology
Acceptance Model [4]. TAM aims to explain why individuals
choose to adopt or not adopt a specific technology when ac-
complishing a task and it is based on two variables: Perceived
Usefulness (PU) and Perceived Ease of Use (PEU). PU is
related to the degree to which an individual believes that the
use of a certain technology would increase his/her performance
in the work. In contrast, PEU refers to the degree to which an
individual believes that the use of a certain technology would
be free of mental and physical effort.

Therefore, by adapting the TAM to the context of this
work, we formulate 14 questions to evaluate the PU of the
NFRec tool (RQ1) and 14 to assess its PEU (RQ2). For each
question, we use a five-level Likert scale to collect participants’
responses. The scale adopted the values: (1) Strongly Disagree,
(2) Disagree, (3) Neither agree nor disagree, (4) Agree, and
(5) Strongly Agree. In addition, we calculate the precision of
the recommendations processed during the case study (RQ3).

Overall, we collected 4 answers for the questionnaire, i.e.,
one for each development team. On average, the teams of
projects B and C have one year of experience in Scrum-based
software projects. On the other hand, the teams of projects A
and D had a mean of three years of experience in the same
type of project.

B. Case Study Execution

To run the case study, we make the NFRec tool available
to the teams of each project via a web link. The execution of
the study comprised two stages: (i) training, and (ii) execution.

During the training phase, we presented concepts about
the structuring of project information and the non-functional
requirements recommendation, followed by a demonstration
of the NFRec tool. The training lasted 1 hour. After this
phase, the teams started using the NFRec tool at their projects’
Sprint Planning Meetings, i.e., a real evaluation scenario in the
industry.

First, they used the tool to create the profiles of their
respective projects based on the assignment of tags referring to
the five factors that affect the definition of NFRs (i.e., applica-
tion domain, platform, project objective, software architecture,
and technologies [15]). None of the teams had reported any
troubles at this step.

Next, for each current Sprint, the teams used the NFRec
tool to support the requirement management process during
the Sprint Planning Meetings, in which they created structured
USs. For each created US, the teams received NFRs recom-
mendations and they could freely interact with the tool, accept-
ing or rejecting suggestions. The duration of the meetings did
not change in any of the projects, i.e., they continued within
the planned interval of 1 hour. In the following, we present
the activities carried out in the first moment of the case study.

In the first observed Sprint of Project A, the team selected
one US, which received two NFR recommendations. The team
accepted only one of them. Therefore, the RS achieved a
precision rate of 50% for the corresponding Sprint from Project
A.

For the first observed Sprint of Project B, the team selected
two USs. For the first described US, the NFRec tool generated
six NFR recommendations. The team accepted five of them.
In contrast, for the second US, the tool generated two NFR
recommendations, but the team accepted only one of them.
Therefore, the RS achieved a precision rate of 75% for the
first evaluated Sprint from Project B.

In the first observed Sprint of Project C, the team se-
lected three USs and the NFRec tool generated three NFR
recommendations for each one them. For two of the USs,
the team accepted all the suggestions. On the other hand,
for the remaining one, the team accepted only two of the
recommendations. Therefore, the RS achieved a precision rate
of 88.88% for the respective Sprint from Project C.

Finally, in the first observed Sprint of Project D, the team
selected three USs. Two of them received three NFR recom-
mendations, which were accepted by the team. In contrast, for
the remaining one, the tool presented two suggestions of NFRs,
of which only one was accepted by the team. Therefore, the
RS achieved a precision rate of 87.5% in the first evaluated
Sprint from Project D.

We highlight that the Product Owners of each project
validated the recommendations accepted by the development
teams. However, we did not evaluate whether the constraints
specified by the recommended NFRs were considered in the
development of the USs within the current Sprints since this
issue is not part of the scope of this work. In the following,
we present the activities carried out in the second moment of
the case study.

In the second observed Sprint of Project A, the team
selected two USs during the Sprint Planning Meeting. The
NFRec tool presented one recommendation for one of the US



and three for the other. The team accepted all the suggestions.
Therefore, the RS achieved a precision rate of 100% in the
second evaluated Sprint from Project A.

In the second observed Sprint of Project B, the team
selected two USs during the Sprint Planning Meeting. The
NFRec tool recommended one NFR for two of them. For the
other one, the tool presented two recommendations. Overall,
the team accepted two of the four suggestions. Therefore, the
RS achieved a precision rate of 50% in the second first Sprint
evaluated from Project B.

In the second observed Sprint of Project C, the team
selected two USs. The NFRec tool recommended one NFR for
the first described US and two for the later. The team accepted
all the suggestions. Therefore, the RS achieved a precision rate
of 100% for the corresponding Sprint.

Finally, for the second observed Sprint of project D, the
development team selected three USs and the NFRec tool
generated two NFR recommendations for each one of them.
The team accepted all the suggestions for two of the USs but
rejected one of the recommendations for the remaining one.
Therefore, the RS achieved a precision rate of 83.33% for the
corresponding Sprint from Project D.

At the end of the case study, all subjects filled in the
questionnaire regarding their acceptance of the NFRec tool.

C. Results and Discussion

After the case study execution, we calculated the precision
of the recommendations generated during the observed period.
In Table I, we present the results of the overall precision
and the precision for each project. Overall, the NFRec tool
recommended 44 NFRs, of which 36 were accepted by the
developers, resulting in a precision rate of 81.8% of the
recommendations for the 20 considered USs. Therefore, we
considered the results promising, concluding that RQ3 was
positively answered. Among the four evaluated projects, we
observed a higher precision rate in Project C (91.7 %), which
is composed of professionals with previous experience in the
use of the structured model of USs. On the other hand, we
observed the lowest precision rate in Project B (66.7 %), which
is the only one of the four projects that it is not developing
a cloud service (back-end). Therefore, some recommendations
were rejected for suggesting back-end assumptions/constraints
such as validating the integrity of data sent to the server.
Additionally, the team of Project B reported difficulties during
the classification of the USs with modules and operations.

TABLE I: Results of precision calculated from the data ob-
tained in the case study

Project Num. USs Num. accep. NFRs Num. rec. NFRs Precis.
Project A 3 5 6 83,3%
Project B 5 8 12 66,7%
Project C 5 11 12 91,7%
Project D 7 12 14 85,7%

Total 20 36 44 81,8%

As mentioned before, at the end of the case study, each
development team answered a questionnaire to assess the
acceptance of the solution regarding the perceived usefulness
and perceived ease of use. To evaluate the responses, we
summarized them as follows: Likert scale values represented
by (1) and (2) were considered as indicative of disagreement

(Disagreement); (3) as indicative of neutrality (Neutral); and
(4) and (5) as indicative of agreement (Agreement).

In Tables II and III, we present the data collected for
PU and PFU, respectively. Positive responses to variables are
highlighted in bold. The maximum number of answers per
question is four since we considered four subjects in the
study. Therefore, as we formulate 14 questions for each TAM
variable, the maximum number of responses per variable is 56.
The final result for each analyzed variable is given by the sum
of the answers per positive indicative (i.e., Agreement) divided
by the maximum number of responses to the corresponding
variable (i.e., 56).

By analyzing the data of the Table II, we verify that the
research participants showed good acceptance for 13 of the
14 analyzed items of PU. Only items PU9 and PU12 did not
receive mostly positive evaluations. For PU9, participants gave
three neutral answers and one positive. In contrast, for PU12,
they gave two positive responses and two neutral ones. Overall,
the PU was positively assessed in 48 of 56 possible responses.
The evaluation demonstrated an acceptance of the perceived
usefulness of 85.7%. Therefore, it is possible to state that the
research participants considered the tool useful (RQ1).

By analyzing the data of the Table III, we verify that the
respondents showed good acceptance for 12 of the 14 analyzed
items of PFU. Only the items PFU1, PFU11, PFU12, PFU13,
and PFU14 did not receive mostly positive evaluations. For
PFU1 and PFU13, the respondents gave two positives and
two negative responses. In contrast, for PFU11, PFU12, and
PFU14, they gave two positives and two neutral responses.
Overall, the respondents positively assessed PFU in 41 of 56
answers, i.e., an acceptance of the perceived ease of use of
73.2%. Initially, some developers encountered difficulties in
structuring USs and defining modules and operations. This
fact may explain why PFU acceptance values were lower than
those of PU. Even so, it is possible to state that the research
participants considered the tool easy to use (RQ2).

TABLE II: Results for perceived usefulness from TAM

ID Item Agreement Neutral Disagreement
PU1 Job Difficult Without 4 0 0
PU2 Control Over Work 4 0 0
PU3 Job Performance 4 0 0
PU4 Addresses My Needs 4 0 0
PU5 Saves Me Time 3 1 0
PU6 Work More Quickly 4 0 0
PU7 Critical to My Job 4 0 0
PU8 Accomplish More Work 3 1 0
PU9 Cut Unproductive Time 1 3 0
PU10 Effectiveness 4 0 0
PU11 Quality of Work 3 1 0
PU12 Increase Productivity 2 2 0
PU13 Makes Job Easier 4 0 0
PU14 Useful 4 0 0

V. THREATS TO VALIDITY

In this work, we consider the classification of validity
threats proposed by Wohlin et al. in [18]. In what follows,
we present the identified threats to validity.

Conclusion validity threats. We conducted the case study
for two 15-day Sprints only, which represents a conclusion
validity threats since we could get different answers with a
longer period. However, to mitigate this threat, we evaluated
four teams simultaneously, which returned similar results. In



TABLE III: Results for perceived ease of use from TAM

ID Item Agreement Neutral Disagreement
PFU1 Confusing 2 0 2
PFU2 Error Prone 0 1 3
PFU3 Frustrating 0 0 4
PFU4 Dependence on Manual 0 1 3
PFU5 Mental Effort 0 0 4
PFU6 Error Recovery 4 0 0
PFU7 Rigid and Inflexible 1 1 2
PFU8 Controllable 4 0 0
PFU9 Unexpected Behavior 0 0 4
PFU10 Cumbersome 0 1 3
PFU11 Understandable 2 2 0
PFU12 Ease of Remembering 2 2 0
PFU13 Provides Guidance 2 0 2
PFU14 Easy to Use 2 2 0

addition, we collected data regarding the different types of
USs, i.e., we could observe different recommendation scenar-
ios during the case study.

Internal validity threats. On average, developers from two
of the four projects had just one year of experience. This fact
can lead to a threat to internal validity, since they may not
be mature enough to properly answer the questionnaire. To
mitigate this threat, developers of each project answered the
questionnaire together, and hence, they had the opportunity
to discuss their responses with each other, aggregating their
knowledge. Another threat to internal validity refers to the
construction of the questionnaire. However, to mitigate this
problem, we generated it based on the TAM, which is a
validated and extensively used model in the literature to
evaluate new technologies.

Construct validity threats. Factors related to the type of
project (e.g, scope, complexity, familiarity with technology,
team experience, etc.) might affect the acceptability of the tool,
which can lead to a threat to construct validity. To mitigate this
problem, we tried to select projects with different scopes and
domains. However, we reinforce that further research is needed
to investigate this threat to validity.

External validity threats. The case study was carried out
with four projects from the same company and, consequently,
it is not possible to generalize the obtained results to other
companies that use Scrum. However, as future work, we intend
to continue the empirical evaluation of the NFRec tool in more
projects from different companies.

VI. CONCLUSION AND FUTURE WORK

In this paper, we presented the NFRec tool for supporting
agile non-functional requirement elicitation. We reported the
results of a case study to evaluate the acceptance of the tool
from the point of view of development teams of four software
projects from a Brazilian software company.

The empirical evaluation indicated that the NFRec tool
seems to be able to accurately recommend NFRs, responding
positively to the research question RQ3. Furthermore, the
results of the case study obtained through the questionnaire
showed that most of the subjects considered the NFRec tool
useful and easy to use for supporting the elicitation of non-
functional requirements, responding positively to the research
questions RQ1 and RQ2.

For future work, we intend to replicate this study with a
greater number of subjects, analyzing different projects from
distinct software companies to mitigate the validity threats.

ACKNOWLEDGMENT

The authors would like to thank CAPES for supporting this
work.

REFERENCES

[1] B. M. Aljallabi and A. Mansour. Enhancement approach for non-
functional requirements analysis in agile environment. In 2015 Inter-
national Conference on Computing, Control, Networking, Electronics
and Embedded Systems Engineering (ICCNEEE), pages 428–433, Sept
2015.

[2] V. Bajpai and R. P. Gorthi. On non-functional requirements: A survey.
In Electrical, Electronics and Computer Science (SCEECS), 2012 IEEE
Students’ Conference on, pages 1–4, March 2012.

[3] M. Bourimi, T. Barth, J. M. Haake, B. Ueberschär, and D. Kesdogan.
AFFINE for enforcing earlier consideration of NFRs and human factors
when building socio-technical systems following agile methodologies.
Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics), 6409
LNCS:182–189, 2010.

[4] F. D. Davis. Perceived usefulness, perceived ease of use, and user
acceptance of information technology. MIS quarterly, pages 319–340,
1989.

[5] J. Eckhardt, A. Vogelsang, and H. Femmer. An approach for creating
sentence patterns for quality requirements. In 2016 IEEE 24th Interna-
tional Requirements Engineering Conference Workshops (REW), pages
308–315, Sep. 2016.

[6] J. Eckhardt, A. Vogelsang, H. Femmer, and P. Mager. Challenging
incompleteness of performance requirements by sentence patterns. In
2016 IEEE 24th International Requirements Engineering Conference
(RE), pages 46–55, Sep. 2016.

[7] W. M. Farid. The normap methodology: Lightweight engineering of
non-functional requirements for agile processes. In Proceedings of
the 2012 19th Asia-Pacific Software Engineering Conference - Volume
01, APSEC ’12, pages 322–325, Washington, DC, USA, 2012. IEEE
Computer Society.

[8] R. Hoda, N. Salleh, J. Grundy, and H. M. Tee. Systematic literature
reviews in agile software development: A tertiary study. Information
and Software Technology, 85:60 – 70, 2017.

[9] D. Mairiza, D. Zowghi, and N. Nurmuliani. An investigation into the
notion of non-functional requirements. In Proceedings of the 2010
ACM Symposium on Applied Computing, SAC ’10, pages 311–317, New
York, NY, USA, 2010. ACM.

[10] R. R. Maiti, A. Krasnov, and D. M. Wilborne. Agile software
engineering & the future of non-functional requirements. Journal of
Software Engineering Practice, 2(1):1–8, december 2018.

[11] R. R. Maiti, A. Krasnov, and M. Wilborne. Predicting nfrs in
agile software engineering. In Proceedings of the 19th Annual SIG
Conference on Information Technology Education, SIGITE ’18, pages
161–161, New York, NY, USA, october 2018. ACM.

[12] R. R. Maiti and F. J. Mitropoulos. Capturing, eliciting, predicting
and prioritizing (cepp) non-functional requirements metadata during the
early stages of agile software development. In SoutheastCon 2015,
pages 1–8, April 2015.

[13] R. R. Maiti and F. J. Mitropoulos. Capturing, eliciting, and prioritizing
(cep) nfrs in agile software engineering. In SoutheastCon 2017, pages
1–7, March 2017.

[14] B. Ramesh, L. Cao, and R. Baskerville. Agile requirements engineering
practices and challenges: an empirical study. Information Systems
Journal, 20(5):449–480, 2010.

[15] F. Ramos, A. Costa, M. Perkusich, H. Almeida, and A. Perkusich. A
non-functional requirements recommendation system for scrum-based
projects. In The 30th International Conference on Software Engineering
and Knowledge Engineering, 2018.

[16] S. Stavru. A critical examination of recent industrial surveys on agile
method usage. Journal of Systems and Software, 94:87 – 97, 2014.

[17] VersionOne. 12th Annual State of Agile Survey, 2018. Acessado
em: 19 de dezembro de 2018. https://explore.versionone.com/state-of-
agile/versionone-12th-annual-state-of-agile-report.

[18] C. Wohlin, P. Runeson, M. Hst, M. C. Ohlsson, B. Regnell, and
A. Wessln. Experimentation in Software Engineering. Springer
Publishing Company, Incorporated, 2012.


