
Automatic Calibration of Performance Indicators for
Performance Analysis in Software Development

Mushtaq Raza
INESC TEC, Porto, Portugal/ Department of Computer Science

Abdul Wali Khan University Mardan
Mardan, Pakistan

mushtaq.raza@fe.up.pt

João Pascoal Faria
INESC TEC/ Faculty of Engineering, University of Porto

Rua Dr. Roberto Frias
Porto, Portugal

jpf@fe.up.pt

Abstract—ProcessPAIR is a novel method and tool for automat-
ing the performance analysis in software development. Based on
performance models structured by process experts and calibrated
from the performance data of many developers, it automatically
identifies and ranks potential performance problems and root
causes of individual developers. However, the current calibration
method is not fully automatic, because, in the case of performance
indicators that affect other indicators in a conflicting way, the
process expert has to manually calibrate the optimal value in
a way that balances those impacts. In this paper we propose a
novel method to automate this step, taking advantage of training
data sets. We demonstrate the feasibility of the method with
an example related with the Code Review Rate indicator, with
conflicting impacts on Productivity and Quality.

Index Terms—automatic performance analysis, personal soft-
ware process, Performance analysis tool

I. INTRODUCTION

Process and product data produced in software development
projects can be periodically analyzed to identify performance
problems, determine their root causes and devise improve-
ment actions. However, conducting the analysis manually is
challenging because of the potentially large amount of data
to analyze, the effort and expertise required, and the lack of
benchmarks for comparison.

ProcessPAIR is a novel method and tool for automated
performance analysis and improvement recommendation in
software development [8]. Based on performance models de-
fined by process experts and calibrated from the performance
data of many projects, it automatically identifies and ranks
potential performance problems and root causes of individual
entities (developers, teams or organizations), so that subse-
quent manual analysis for the identification of deeper causes
and improvement actions can be properly focused. Process-
PAIR was successfully applied in education and training envi-
ronments [9]. ProcessPAIR is also of interest to high-maturity
organizations (CMMI maturity levels 4 and 5), because it fa-
cilitates the implementation of practices of the Organizational
Process Performance (ML4) and Organizational Performance
Management (ML5) process areas [3].

However, the current calibration method used by Process-
PAIR is not fully automatic, because the optimal value of each

DOI reference number: 10.18293/SEKE2019-188

performance indicator must be provided by the process expert.
In many cases, the optimal value follows directly from the
definition and is located in one extreme of the scale (minimum
or maximum). But in the case of performance indicators that
affect other indicators in a conflicting way, an intermediate
optimal value that balances those impacts need to be manually
calibrated by the process expert. An example is the Code
Review Rate (size unit reviewed per time unit). If code reviews
are performed too fast, quality of reviews (Code Review Yield)
is negatively affected, but if they are performed too slow,
Productivity is negatively affected, and it is not easy to choose
a review rate that balances these two conflicting impacts.

In this paper we propose a novel method to automate this
step, and hence fully automate the model calibration process,
taking advantage of training data sets. We show the feasibility
of the method with a data set that includes Code Review Rate,
Productivity and Code Review Yield data.

The article is organized as follows. Section II presents
background information about ProcessPAIR. Related work
is presented briefly in Section III. Section IV presents the
proposed method and feasibility study. Section V concludes
the article and points directions for future work.

II. BACKGROUND

A. The ProcessPAIR Approach

The ProcessPAIR approach involves three main steps (see
Figure 1):

1) Define: Process experts define the structure of a perfor-
mance model (PM) suited for the development process
under consideration. In our approach, a PM comprises a
set of top-level and child performance indicators (PIs),
organized hierarchically by cause-effect relationships
[7].

2) Calibrate (or Learn): The PM is automatically calibrated
by ProcessPAIR based on the performance data of many
process users. The statistical distribution of each PI
and statistical relations between PIs are computed from
the training dataset, taking advantage of statistical and
machine learning techniques [7].

3) Analyze: Once a PM is defined and calibrated, the per-
formance data of individual entities can be automatically



 act Process v iew

P
ro

c
e

s
s

P
A

IR
P

ro
c

e
s

s
 e

x
p

e
rt

1. Define performance 

model structure

2. Calibrate performance 

model

3. Analyze dev eloper 

performance data

Performance model structure

Performance indicators (PIs)

Relationships between PIs

Calibrated performance model

Statistical distribution of PIs

Statistical relationships between PIs

Performance analysis and 

recommendation report

Performance problems

Ranked root causes

Performance data 

of a single 

dev eloper

Performance data 

from many 

dev elopers

Fig. 1. UML activity diagram depicting the main activities and artifacts in
the ProcessPAIR method.

analyzed by ProcessPAIR, to identify performance prob-
lems (in top-levels PIs), identify potential root causes
(related with child PIs), and rank those potential root
causes.

The ProcessPAIR approach is supported by the Proces-
sPAIR tool, freely downloadable from https://blogs.fe.up.pt/
processpair/. The tool is implemented as a standalone Java
application, in order to protect the users data. It has a core
framework and extensions for the processes of interest. An
extension for the Personal Software Process (PSP), containing
the definition of performance models for the PSP and data
loaders from the most relevant project management tools used
by PSP developers, was developed for education and training
environments, but other extensions can be easily developed for
other processes and contexts.

Further details about each step are given next.

B. Model Definition

The first step in our approach is the definition of the
following elements of the PM:

• list of relevant PIs, including formulas for their computa-
tion from base measures, and the definition of the optimal
value of each PI;

• subset of top-level PIs;
• cause-effect relationships between PIs, determined by a

formula or statistical evidence;
• sensitivity coefficients [10] between PIs related by a

formula (needed for ranking the identified root causes
in the performance analysis step).

C. Model Calibration
The PM is automatically calibrated by ProcessPAIR from

training data sets, generating the following data:
• approximate statistical distribution (cumulative distribu-

tion function) of each PI in the training data set;
• recommended performance ranges for each PI, needed

for classifying values of each PI of a subject under
analysis into three semaphores: green - no performance
problem; yellow - a possible performance problem; red -
a clear performance problem. Such ranges are calibrated
automatically from the training data, so that there is an
approximately even distribution of data points by the
semaphores. In particular, the green range corresponds
to the 1/3 data points closest to the optimal value, and
the red range corresponds to the 1/3 data points farthest
to the optimal value;

• regression models and sensitivity coefficients between PIs
not related by a formula. Sensitivity coefficients between
PIs not related by a formula are computed by first deter-
mining a regression model from the calibration dataset (a
piecewise linear model organized as a regression tree [1]),
and subsequently computing the corresponding sensitivity
coefficient.

Some results of model calibration can be consulted in Figure
2. The example refers to the Code Review Rate, here named as
Code Review Productivity. The approximate statistical distri-
bution (cumulative distribution function) of this performance
indicator, calibrated automatically by ProcessPAIR based on a
training data set, is shown on the bottom left side. The ’green’
and ’yellow’ performance ranges are shown on the right; these
ranges are calibrated automatically by ProcessPAIR, based on
the commutative distribution function and the optimal value
(calibrated manually by the process expert). The data points
in the chart on the right show the values of this performance
indicator for a series of projects under analysis. Different
performance indicators defined in the performance model can
be consulted in the tree view on the top left side. The Code
Review Productivity has a green semaphore because its values
lie mostly inside the green range.

D. Performance Analysis
Having defined and calibrated the PM, the performance data

of individual entities (developers, teams or organizations) can
be automatically analyzed by ProcessPAIR, to identify and
rank performance problems and potential causes [7].

To rank the identified causes (child PIs) of performance
problems in top-level PIs, it is used a ranking coefficient, that
combines a sensitivity coefficient (measuring the impact of
improving child PIs on top-level PIs) and a so-called percentile
coefficient (measuring the difficulty of improving the child
PIs).

The percentile coefficient is computed based on the distance
of the observed values to the optimal value of each PI.

Hence the choice of optimal value has impact on both
problem identification and root cause identification and pri-
oritisation.

https://blogs.fe.up.pt/processpair/
https://blogs.fe.up.pt/processpair/


Fig. 2. ProcessPAIR user interface.

III. RELATED WORK

A. Optimal Code Review Rate

According to [4] [12], the time spent in reviewing a work
product in relation to its size (review rate) is a leading indicator
of the review yield (percentage of defects found).

In a published study [5], the recommended review rate of
200 lines of code (LOC) per hour or less was found to be an
effective rate, identifying nearly two-thirds of the defects in
design reviews and more than half in code reviews.

A team using the Team Software Process (TSP) obtained a
process performance model (PPM) for establishing a target
code review rate (number of lines of code reviewed per
hour), based on the predicted impact on the code review yield
(percentage of defects found in reviews), characterized as [12]:

• Regression equation: CodeReviewY ield = 146 −
0.364× CodeReviewRate

• R2 = 94.1%, p− value = 0.000

According to this regression equation, the smaller the code
review rate, the higher is the predicted code review yield (that,
anyway, by definition, cannot exceed 100).

However, the quantitative impact on overall productivity
was not analysed in those studies.

B. Productivity Measurement

Software development productivity is usually measured in
function points per time unit or lines of code (LOC) per time
unit [13] [6] [11]. However, both productivity measurement
techniques have some limitations. On one hand, the mea-
surement of function points remains subjective even after the
completion of the software development project. On the other
hand, productivity measures based on LOC have limitations
due to the lack of counting standards and the dependence on
the programming language [2].

In the data set we will explore for automatic calibration
of the optimal value, there is no information about function

points, only size and time. The training data set contains
data from more than 3000 individuals that developed the 10
projects of the standard PSP training (the same projects for all
individuals, but with varying programming languages). Hence,
we will take the average effort per project as a proxy for
the functional complexity of each project, and calculate the
individual productivity as the ratio between the functional
complexity of the projects and the actual time (hours) spent
by that individual.

IV. PROPOSED METHOD AND RESULTS

A. Method

Let us assume that a child PI X (such as the Code Review
Rate) has conflicting impacts on two or more parent PIs Y1,
Y2, ..., Yn (such as the Code Review Yield and Productivity).

The first step is to analyse the impact of the child PI X on
a parent PI Yi at a time, represented as a function fi from X
to Yi. In order to arrive at a smooth function, we derive that
function as follows: for each candidate optimal value x of X ,
we compute the mean value of Y in the data points that have
the value of X within the green range corresponding to x.

Formally, denoting by S the training data set, p a data point
in S, Yi(p) the value of Yi in p, X(p) the value of X in p, F
the cumulative distribution function of X in S, and F−1 the
inverse of F ,

fi(x) , mean{Yi(p)|p ∈ S ·X(p) ∈ Green(x)}

with

Green(x) = [F−1(
2

3
F (x)), F−1(

2

3
F (x) +

1

3
)]

In the second step, we compute a combined impact function
fc, as a normalized average of the previous functions:

fc(x) , mean{ fi(x)

max(fi)
|i = 1, ..., n}

The values of this function are adimensional values in the
0-1 scale.

Finally, we choose the value x of X that maximizes fc(x).
All the filtering procedures and calculations can be fully

automated.
We implemented the calculations in a prototype tool taking

advantage of evolutionary algorithms (genetic algorithms) to
solve the optimization problem in a way that can scale to large
data sets.

B. Results

In this study, for automatic calibration, we used a PSP
data set available from the Software Engineering referring
to 31,140 projects concluded by 3,114 engineers during 295
classes of the classic PSP for Engineers I/II training courses
running between 1994 and 2005. In this training course,
targeting professional developers, each engineer develops 10
small projects, following increasingly sophisticated process



Fig. 3. Impact of CRR on CRY

Fig. 4. Impact of CRR on Productivity

variants (PSP0, PSP1, etc.). Since code reviews are introduced
only in the third project, we excluded the data points with zero
time spent in Code Reviews. Since the Code Review Yield
is undefined in case of 0 defects entering the Code Review
phase, we also excluded data points with undefined Code
Review Yield. In the end, we selected 9,650 data points (each
corresponding to a project developed by a developer). Based
on the selected data points, we computed the impact functions
for the case of Code Review Rate, impacting Productivity
and Code Review Yield. The resulting curves are presented
in Figures 3, 4 and 5.

Figure 3 shows that, as expected, higher values of Code
Review Rate are associated with lower values of Code Re-

Fig. 5. Combined impact of CRR on CRY and Productivity

view Yield, which declines more significantly in the 200-500
LOC/hour range.

Figure 4 shows that, as expected, higher values of Code
Review Rate are associated with higher values of Productivity,
with a more significant increase in the 100-600 LOC/hour
range.

Figure 5 shows the combined impact of Code Review Rate
on Code Review Yield and Productivity. The combined curve
has some oscillations due to the close symmetry of the two
component curves, with a peak value at 270 LOC/hour.

Hence, the computed optimal value is 270 LOC/hour. This
value is a bit higher than the literature recommendation of
200 LOC/hour, but perhaps closer to common practice when
productivity impact is also important.

V. CONCLUSIONS

The method proposed in this paper worked successfully for
the case study presented, allowing the automatic calibration
of the optimal value and range of a PI (Code Review Rate)
with conflicting impacts on other PIs (Code Review Yield and
Productivity). The derived optimal value (270 LOC/hour) is a
bit higher than the literature recommendation (200 LOC/hour),
which is justified by the fact that we are quantitatively ana-
lyzing not only the impact on review effectiveness (yield), but
also on productivity.

As future work, we intend to implement the calibration
method in the ProcessPAIR tool in order to automatically
calibrate all the PIs with conflicting impacts on high-level PIs.

REFERENCES

[1] L. Breiman. Classification and Regression Trees. The Wadsworth
statistics/probability series. Wadsworth International Group, 1984.

[2] David N Card. The challenge of productivity measurement. In Pacific
Northwest Software Quality Conference, pages 1–10, 2006.

[3] Mary Beth Chrissis, Mike Konrad, and Sandra Shrum. CMMI for de-
velopment: guidelines for process integration and product improvement.
Pearson Education, 2011.

[4] Watts S Humphrey. Psp (sm): a self-improvement process for software
engineers. Addison-Wesley Professional, 2005.

[5] Chris F Kemerer and Mark C Paulk. The impact of design and code
reviews on software quality: An empirical study based on psp data. IEEE
transactions on software engineering, 35(4):534–550, 2009.

[6] Katrina D Maxwell and Pekka Forselius. Benchmarking software
development productivity. Ieee Software, 17(1):80–88, 2000.

[7] M. Raza and J. P. Faria. A model for analyzing performance problems
and root causes in the personal software process. J. Softw. Evol. Process,
28(4):254–271, April 2016.

[8] Mushtaq Raza and João Pascoal Faria. Processpair: A tool for automated
performance analysis and improvement recommendation in software
development. In Proceedings of the 31st IEEE/ACM International
Conference on Automated Software Engineering, ASE 2016, pages 798–
803, New York, NY, USA, 2016. ACM.

[9] Mushtaq Raza, João Pascoal Faria, and Rafael Salazar. Assisting
software engineering students in analyzing their performance in software
development. Software Quality Journal, pages 1–29, 2019.

[10] Andrea Saltelli, Marco Ratto, Terry Andres, Francesca Campolongo, Jes-
sica Cariboni, Debora Gatelli, Michaela Saisana, and Stefano Tarantola.
Global sensitivity analysis: the primer. John Wiley & Sons, 2008.

[11] Goparaju Purna Sudhakar, Ayesha Farooq, and Sanghamitra Patnaik.
Measuring productivity of software development teams. 2012.

[12] Shurei Tamura. Integrating cmmi and tsp/psp: using tsp data to create
process performance models. Technical report, Carnegie-Mellon Univ
Pittsburgh Pa Software Engineering Inst, 2009.

[13] Stefan Wagner and Melanie Ruhe. A systematic review of productivity
factors in software development. language, 1989, 1980.


	Introduction
	Background
	The ProcessPAIR Approach
	Model Definition
	Model Calibration
	Performance Analysis

	Related Work
	Optimal Code Review Rate
	Productivity Measurement

	Proposed Method and Results
	Method
	Results

	Conclusions
	References

