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Fernanda Famá, Cleuves Cajé de Carvalho, Danilo F. S. Santos, Angelo Perkusich, Kyller Gorgônio
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Abstract

The development of tools and smart devices has grown
exponentially over the past few years, most due to the ap-
pearance of the Internet of Things (IoT). The large num-
ber of different connected devices highlighted challenges
such as interoperability, scalability and reliability. In this
scenario, for the development of new services and applica-
tions, it is necessary to use software platforms that ease the
deployment and validation based on those challenges. With
this, arises the need for middlewares, platforms that provide
an environment for the development of such applications. In
this way, in order to provide a simple, lightweight and dy-
namic approach, this article presents a study and develop-
ment of an architecture that allows the communication, con-
trol and monitoring of IoT devices using an intuitive manner
through an actor model. This is possible through the inte-
gration of the Calvin framework, the MQTT protocol and
the OCF data model, providing an interoperable, reliable,
dynamic and remote communication. A smart home envi-
ronment was used for validation showing the relevance of
the proposal.

Actor model; dynamic control; interoperability; IoT;
MQTT; OCF; smart home

1 Introduction

Internet of Things (IoT) is described as a network infras-
tructure with interoperable communication standards and
protocols where physical or virtual “things” share informa-
tion in real time [22]. Aiming to make the Internet more
comprehensive and immersive, IoT enables access to a wide
range of devices. Those devices are used to build applica-
tions in many domains, including industrial and home au-
tomation, intelligent cities and healthcare [24].
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Due to the increasing interest in IoT application, a wide
variety of devices and objects that aims to provide utilities
and services through the Internet are under development.
This variety of devices and services creates new challenges,
which demands the use of different architecture models in
terms of Software Engineering.

The main challenges to achieve the maximum poten-
tial of IoT are interoperability, mobility, scalability, perfor-
mance, security and privacy. Because of the heterogeneity
of devices and platforms, interoperability is a major obsta-
cle to be overcome. Standardization of protocols and pat-
tern interpretations are important to make all devices acces-
sible and interoperable. Therefore, data exchange between
a large number of devices must be managed so that sensitive
data is not compromised [1, 10].

Middlewares are used to allow the usage of heteroge-
neous components and to abstract implementation details of
network protocols and communication resources. A mid-
dleware works as a communication link between devices
and applications for IoT. It should provide interoperability,
device discovery and management, security, privacy, and
also high-volume data management [2, 15].

In this paper, we propose a new IoT System architec-
ture model, based on an actor-based middleware, that is
interoperable, dynamically controllable and manageable.
This new system is built on top of Calvin [21] middle-
ware, MQTT communication protocol, and oneIoTa models
based on the OpenConnectivity Foundation (OCF)1 specifi-
cations. While Calvin was used for the development, de-
ployment and execution of an IoT smart home application,
MQTT and oneIoTa provided interoperability and standard-
ization between different devices. As a validation scenario,
we built a smart-home application, which, based on the user
behaviour, demands ways to dynamic control remote de-
vices in a interoperable way.

The paper is structured as follows. Section 2 discusses
the related work. Section 3 introduces the tools used for

1http://www.openconnectivity.org
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the IoT application. Specifically, the Calvin framework that
supported the entire implementation, the MQTT protocol
and the OCF “consortium” are described. Section 4 details
the proposed architecture and the dynamically controlled
smart home application. The implementation and validation
of the proposed system are presented in Section 4. Finally,
conclusions and future works are presented in Section 5.

2. Related Work

Several studies were executed to design, implement and
control IoT systems. Konduru et al [11] presents a study
that identifies challenges and solutions considering interop-
erability of devices. Tools such as Google Weaver, IoTivity,
AllJoyn and Apple Home Kit are analysed. Google Weaver
and the Apple Home Kit are focused on solving interop-
erability only for pre-defined devices. While AllJoyn is a
framework that together with IoTvity are part of the Open
Connectivy Foundation (OCF).

Belsa et al [3] also address the interoperability problem,
but with a different approach. IoT platforms are integrated
through a flow-based model. The proposed architecture is
based on the Node-RED2 middleware. However, unlike
Calvin, that uses a distributed hash table (DHTs), it does
not support the development of applications with distributed
systems. [20], also uses Node-RED to design, deploy and
control devices remotely in a smart laboratory.

Finally, [12] implements a Healthcare resource model
using OCF and IoTivity platform. In this work, two OCF
standards are used, the OIC Healthcare Resource and the
OIC Healthcare Device. Some of these resource are blood
glucose, body metrics, heart rate and oxygen saturation sen-
sors. In which, each resource has a schema and RAML.

3 Basic Concepts

In this section we present the main technologies used in
this work.

3.1 Calvin

Calvin is an open source framework aiming to ease the
development of IoT applications in distributed systems. It
is based on a data flow programming methodology through
an actor model [14, 16]. The paradigm of data flow pro-
gramming is present as an actor model. An actor is a soft-
ware component that models functions, devices, services or
some type of computing in the form of an object. In Calvin,
tokens are used to establish communication between actors.
These tokens are created when the input actors captures and
processes data. Data is them transformed into resources,
which in this environment are considered tokens, that will
be consumed by other actors [18].

2Node-RED: https://nodered.org/

The framework has several standard actors and sensors
responsible for input/output of data, media and network ac-
cess (including HTTP, TCP and MQTT), among others [21].
New actors can be implemented in Python and the dataflow
between them is expressed using a declarative language
called CalvinScript [19]. Because of the ease of develop-
ing actors, Calvin simplifies the implementation of several
new services based on this type of model.

To develop an application in Calvin it is necessary to fol-
low a cycle consisting of four phases: describe, connect,
deploy and manage. Firstly, the developer will describe
how a task is executed by each actor. Secondly, it is nec-
essary to make the connections between them. This can be
done using the Calvin GUI. This tool lists the available ac-
tors and allows to connect them through their inputs and
outputs. When performing this, the CalvinScript is auto-
matically generated. Figure 1 shows a detail of Calvin’s
graphical interface. After creating connections, the applica-
tion is already ready to deploy. Finally, during the manage-
ment phase, modifications can be made in the application
and Calvin executes the deployment [14, 16].

Figure 1. Calvin GUI.

In Calvin’s architecture there is a layer called runtime
where actors are executed. It has two sub-layers, platform
dependent and platform independent. The first allows com-
munication between several runtimes through the most var-
ied communication protocols, such as WiFi and Bluetooth.
The second, allows the execution of several actors at one
runtime only. Calvin GUI works on that layer.

3.2 MQTT

Message Queue Telemetry Transport (MQTT) is an ap-
plication layer protocol that centralizes the sending and re-
ceiving of data from applications using a wireless sensor
network, enabling the communication between devices with
limited power source. This architecture is based on a Pub-
lisher/Subscriber system. Publishers are responsible for
sending data collected through sensors, while subscribers
consumes the data that was collected [9].

A Broker is used to coordinate the sending and receiving
of data in order to ensure that the communication will be
reliably. The Broker receives the data collected and clas-
sifies the data as topics. The data is then sent to devices
interested in a specific topic. The broker also ensures that
the data will be received only by the subscribers who will
consume them. To provide safety and quality of data com-



munication, MQTT uses encryption and login to guarantee
a minimum level of quality of service (QoS) [13].

The MQTT also allows the creation of a development en-
vironment for IoT applications. This is due to its high inte-
gration capability with several IoT development platforms,
as it enables the development of services using various
programming languages, such as Python, Java, JavaScript,
PHP, Ruby and C. Also, MQTT allows extending these ser-
vices to mobile platform such iOS and Android [6].

3.3 OCF and oneIoTa

Open Connectivity Foundation3 (OCF), is an IoT con-
sortium that aims the specifications, open source and cer-
tifications needed for the development of an IoT environ-
ment with interoperability between devices that acts as OCF
Clients and Servers [4, 17]. The exchange of information
between devices uses the JSON format, following the spec-
ifications for identifying them and their connected resource,
which makes it easier to validate the data structure [5]. To
describe OCF services the specifications of the resources
are made using a descriptive language of RESTful APIs, the
RAML. To ease the implementation of the OCF data model,
the consortium has developed the open tool oneIoTa4 that
has several examples of type RAML, Swagger and JSON
Schema models. Users can also create their own templates
that, if approved, are stored in a GitHub repository.

4 Proposed Solution

As stated before, we are motivated by the following as-
pects: interoperability; remote access and dynamic config-
urations. Interoperability is a critical problem in IoT. Ap-
plication developers should consider providing services to
all clients regardless of the hardware platform specifications
they use. Integration with different communication devices
is necessary so that new functions can be added to the ap-
plication without compromising existing functions or even
losing them [1].

Devices and appliances must also allow remote access in
order to be monitored and controlled through a computer or
a smartphone [23]. In security applications remote access
is indispensable because it allows the user to monitor their
home when they are traveling for example.

Finally, IoT applications must allow dynamic configura-
tion. Most of IoT applications developed today were cre-
ated to perform pre-defined tasks, for that reason they are
static systems limited to certain actions. Dynamic config-
uration makes the system more elastic and comprehensive
because the user can configure the applications to handle
devices and sensors that will be added later. In addition,

3OCF: https://openconnectivity.org/
4oneIoTa: https://oneiota.org/

new monitoring and control applications can be created and
modified at the users discretion.

To achieve the above goals and to facilitate the imple-
mentation of the system, we are looking for an IoT mid-
dleware that provides the best possible solution. The exist-
ing IoT architectures are divided into three types of classes:
service-based; cloud-based; and actor-based. Service-based
architectures and actors provide interoperability, they sup-
port a specific programming model or device abstraction.
However, the service-based model provides limited func-
tionality for the user when it comes to integrating with other
applications or even interpreting data. The cloud-based
model provides interoperability through specific standards,
which is not desired, and the middleware can stop if the
cloud provider terminates the service [15]. For these rea-
sons, the actor-based model is the best solution for the smart
home system we propose.

An actor-based architecture provides a better way of
dealing with large-scale IoT devices, since middleware can
be deployed across all layers of the architecture, so devices
can perform actions where it is more adequate. Therefore,
an actor-based middleware, such as Calvin and Node-RED,
is a good choice in applications involving a large number
of “things”. In addition to having features such as interop-
erability, security, and privacy, where users can choose the
form and location where the data will be stored [15].

The proposed architecture involves a variety of devices
and technologies. The first part consists of sensors, for
example temperature sensors, present in wireless nodes.
These nodes are connected to a gateway unit which, in turn,
is responsible for sending the sensor data, through mes-
sages, to the MQTT Broker. The gateway must then be
equipped with the Calvin framework with a Publish appli-
cation that sends the messages with a specific topic for the
sensor identification. Calvin Constrained is a good choice
in this case due to the limitation of some devices.

In Figure 2 a representation of the logical diagram of
the proposed system can be seen. This diagram provides
a view of the connection and communication between the
architecture elements. Each component behaves as follows:

1. The Middleware receives the data sent by the sensors
with its information, and modifies that data and trans-
forms it into a JSON object. This object is a sequence
of key/value pairs. A key must be a string, and the
value must be a JSON base type;

2. The Gateway is a MQTT client that connects to the
cloud server through a TCP/IP connection. Once con-
nected the gateway can publish the data of sensors and
devices for the broker to distribute to the controller and
also subscribe to the data published by the broker to the
devices. The broker acts as an intermediary between
the gateway and the controller.

3. The Controller application subscribes to the sensors



Figure 2. Architecture of the proposed sys-
tem.

and devices data coming from the Gateway through
the cloud, performs the control action and publishes
the new data to the device;

4. The user has direct access to the cloud server through
the platform on the Internet, and can manage the Bro-
ker data;

5. The user can access the application controller directly
from the local machine or via remote access.

In order to exchange MQTT messages, a Broker, which
is implemented on a cloud platform, is required. There are
several free and paid cloud platforms available with sup-
port for gateways, services, and application protocols such
as REST, COAP, XMPP, and MQTT [1]. Eclipse Mosquitto
was chosen for the application because it is a Broker that
provides a lightweight server implementation of the MQTT
protocol and, moreover, it is open source (EPL/EDL li-
censed) [7, 8].

Finally, the control module provides the system-wide
management through dynamic configuration. The applica-
tion is implemented in Calvin GUI, which is a web-based
GUI for Calvin application development. To access the GUI
platform the user must have the Calvin runtime running on
a local machine or on a machine on the same network. The
dynamic configuration of this application is done in a sim-
ple way, given the ease in changing the actors and their data
flows in the GUI platform. Therefore, you can at any time
interrupt the application’s data flow and modify it according
to your needs.

4.1 Validation

A smart home application was implemented using the
proposed architecture to validate the proposed solution.
Figure 3 provides a visual illustration of the technologies
and how they connect with each other. The application con-
sists of a system that collects sensor data and transmits it to

the controller. This data is used to monitor and to control
the actuator device dynamically and remotely. The use case
consists of performing the temperature control of environ-
ments by means of an air conditioning device and sensor
nodes.

Figure 3. Smart home system overview.

A test environment consisting of four (4) Linux based
Virtual Machines running Calvin the framework. Two of
these machines were used to simulate an environment of a
residence with their devices, i.e. the air conditioners. The
other two machines were used to simulate the temperature
sensors distributed in the environments. In Figure 4 the
sequence of messages of two different simulated environ-
ments, living room and room, can be observed.

Figure 4. Sequence of messages between en-
tities.

To validate the interoperable feature, it was used the
oneIoTa specification for OCF devices5. Table 1 details
the specifications of air conditioner devices. As can be ob-
served in Figure 4, the payload of the devices are in ac-
cordance with the recommendations of the OCF, but as a

5OCF Device Specification: https://openconnectivity.
org/specs/OCF_Device_Specification_v2.0.0.pdf



differentiation between the requirements of the sensor and
the air conditioner, the air conditioner was modified to fa-
cilitate the understanding of reader. These specifications, as
mentioned in 3.3, enables interoperability between devices.
OCF defines the resource model that provides consistency
among the devices in the home. This model uses the system
of resources and devices, whose features exchanged are of
various types, in the case of air conditioner has the type bi-
nary and the temperature. Each resource type defines a set
of properties that are defined using the JSON format.

Table 1. OCF Device Resources.

Device Name
Required
Resource
name

Required Resource
Type RAML/JSON example

Air Conditioner Binary Switch oic.r.switch.binary
{ ”rt”: [”oic.r.switch.binary”],
”id”: ”unique example id”,
”value”: false }

Temperature oic.r.temperature

{”rt”: [”oic.r.temperature”],
”id”: ”unique example id”,
”temperature”: 20.0,
”units”: ”C”,
”range”: [0.0,100.0]}

To fulfill the remote access feature, Calvin GUI was used
to perform updates remotely. The framework allows the
control to be remotely carried out on the machine where
Calvin is installed or on another machine on same network.
In addition, the inclusion of a virtual machine in the cloud,
used as a broker running the MQTT server, allows the user
to subscribe to a topic of interest. The data published in
this topic is sent to those who requested it. In Figure 4 it is
possible to identify 3 different topics that the user can sign
in. Figure 5 shows more clearly how the message exchange
occurred in the application.

Figure 5. Subscriber topics in JSON format.

The user must initiate the process so that the controller
requests the room temperature to the broker. The broker ac-
quires this data from the sensor temperature and sends this
value to the controller. The same occurs with the air con-
ditioner. The control will determine whether the air condi-

tioner stays on/off or modifies its state according to the data
available and the user specification.

To achieve dynamic configuration, the user must be able
to add new devices, modify the control model, and its pa-
rameters. Figure 6 shows a small part of the control imple-
mented. Figure 6(a) shows a specific setpoint for the con-
trol of the switch of the air conditioner. In Figure 6(b) this
setpoint was removed from the control and replaced in the
Figure 6(c) (setpoint2). This sequence was executed in run-
time, where the controller device was kept running during
the changing of setpoints. Also, by the use of a standardized
data model (oneIoTa), all remote clients were able to keep
receiving updates without any interruption.

5. Conclusions and future work

This article presented an architecture that integrates sev-
eral technologies, such as IoT protocols and frameworks,
to provide a scalable and dynamic environment for the de-
velopment of services to remotely control and monitoring
devices such as, sensors and actuators. The whole archi-
tecture was developed following a model based on actors,
which enabled a dynamic manipulation of components for
IoT applications. As also, using a widely-used protocol,
it was possible to establish the communication in a practi-
cal and intuitive way through a MQTT broker integrating
with cloud services. A JSON based data model (oneIoTa)
was used to ensure interoperability between devices. The
approach has been successfully developed, as can be veri-
fied in its validation procedure. This infrastructure can be
adapted to other environments, such as industrial, hospital
or business, according to each user’s need. In the future,
we should include several other devices, providing a means
of remote monitoring of these devices and their location in
application domains.
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