SSLDoc: Automatically Diagnosing Incorrect SSL
API Usages in C Programs

Zuxing Gu, Jiecheng Wu, Chi Li, Min Zhou, Ming Gu
School of Software Engineering, Tsinghua University, Beijing , China, 100084

Abstract—Secure Sockets Layer (SSL) and Transport Layer
Security (TLS) protocols provide a reliable communication chan-
nel between applications over the Internet. Implementations
of these protocols (e.g., OpenSSL and GnuTLS) publish well-
format documentation and examples online to guide the usage
of SSL/TLS APIs. However, incorrect usages have caused many
severe vulnerabilities (e.g., privilege escalation, denial of service,
man-in-the-middle attack, etc.) in recent years. In this paper,
we introduce SSLDoc to diagnose incorrect SSL. API usages in
real-world C programs automatically. The key insight behind
SSLDoc is a constraint-directed static analysis technique powered
by domain-specific usage patterns that we learn from real-world
vulnerabilities and bug-fix-related patches. We have instantiated
SSLDoc for OpenSSL APIs and applied it to large-scale open-
source programs. SSLDoc found 45 previously unknown security-
sensitive bugs in OpenSSL implementation and applications in
Ubuntu. We created and submitted issues for all of them. Up to
now, 35 have been confirmed by the corresponding development
communities and 27 have been fixed in master branch.

Index Terms—SSL, API usage validation, static analysis, bug
detection

I. INTRODUCTION

Secure Socket Layer (SSL) and Transport Layer Security
(TLS) are the most widely deployed protocols in security-
sensitive software. They provide a confidential and authentic
end-to-end communication mechanism against an active, man-
in-the-middle attacker. The details of these protocols are
complicated and involves many steps to set up and validate
certificate authority [1], [2]. Therefore, client programs usually
rely on SSL libraries such as OpenSSL [3] and GnuTLS [4],
which encapsulate the internal details and diverse kinds of
cryptography algorithms into APIs with well-format documen-
tation and examples. However, correct usage of SSL APIs is
required to satisfy certain constraints, such as call conditions
or call orders. Violations of these constraints will lead to
software bugs and more critically, can have severe security
implications. For example, missing error status code validation
of SSL APIs will cause a denial of service by remote attackers
(CVE-2016-2182 [5]), and broken SSL certificate validation
will result in man-in-the-middle attacks [6]. A recent study
show that SSL certificate validation is completely broken in
many security-critical applications and libraries [7].

Many different tools, techniques and methodologies have
been proposed to address the above problems. Clark et al. [8]
present a comprehensive survey of SSL issues to enhance the
certificate infrastructure used in practice. Brubaker et al. [9]

DOI reference number: 10.18293/SEKE2019-006

systematically test the correctness of the certificate validation
logic in SSL/TLS implementations. However, they focus on
SSL implementation and require considerable manual efforts
to prepare a test environment.

To automatically detect incorrect usages of SSL APIs in
client programs, static analysis has long prevailed as one of the
most promising techniques [10]. For example, He et al. [11]
design and implement SSLINT, a scalable static analysis tool
to match a program dependence graph with a handcrafted,
precise signature modeling the correct logic usage of SSL
APIs. Although SSLINT is capable of detecting incorrect
usages in practice, it is hard to apply to APIs without pre-
defined signatures and produces many false positives and false
negatives due to imprecise static analysis (e.g., flow-insensitive
and context-insensitive). Yun et al. [12] present APISan for
incorrect API usages of causal relation and semantic relation
on arguments with security implications by leveraging the
strength of static analysis (such as control dependency anal-
ysis) and code mining (such as frequent sub-itemsets mining
algorithm). It provides accurate detection and can be applied
to scale real-world system programs. However, a challenge
for such tools is insufficient data to train models, which is
particularly severe for SSL APIs in client programs.

In this paper, we aim at augmenting current detection
capability of incorrect SSL API usage for large-scale C pro-
grams. The key insight is a constraint-directed static analysis
technique powered by domain-specific usage patterns. To
understand the root causes of incorrect usages of SSL. APIs,
we begin with a preliminary investigation of real-world vulner-
abilities to summarize generic incorrect usage patterns. Lever-
aging this knowledge, we design and implement SSLDoc, a
static analysis detector employing under-constrained symbolic
execution [13] to generate abstract symbolic traces with rich
semantics and detect incorrect usages. In this way, SSLDoc
can precisely conduct a flow-, control- and context-sensitive
analysis inter-procedurally (i.e., capable of capturing temporal
sequencing of API calls, path constraints, and data flows
between parameters and return values in or across procedures).

To evaluate SSLDoc in practice, we instantiated it with
OpenSSL APIs and applied it to more than half million
lines of source code, including OpenSSL implementation and
15 applications in Ubuntu. The result shows that SSLDoc
discovers 45 previously unknown security-sensitive incorrect
SSL API usages. We reported our findings to developers
and received 35 confirmations, out of which 27 have been
fixed in multiple branches. Moreover, we share the lessons

learned from bug detecting, issue reporting and discussions
with developers.
In summary, our paper makes the following contributions:

« We design and implement SSLDoc, a static analysis tool
to augment current detection capability of incorrect SSL
API usage for large-scale C programs.

« We instantiate SSLDoc with OpenSSL APIs and apply
it to real-world programs. It discovers 45 previously
unknown incorrect SSL API usages, out of which 35 have
been confirmed by developers.

o We share the lessons learned from bug detecting, issue
reporting and discussions with developers in practice. We
hope our findings can motivate more researcher to combat
incorrect SSL. API usages.

The rest of this paper is organized as follows. Section II
provides motivating examples of our work. Section III presents
the design of SSLDoc, followed by an evaluation in Section
IV. We share the lessons learned in Section V and discuss
related work in Section VI and conclude in Section VII.

II. MOTIVATING EXAMPLE

Instead of implementing SSL themselves, Client programs
usually rely on APIs of SSL libraries such as OpenSSL and
GnuTLS as well as higher-level data-transport libraries such as
Curl [14]. While APIs encapsulate the details, they also expose
rich semantic constraints. Violations of these constraints, in
turn, lead to serious security problems.

To better understand incorrect SSL. API usage patterns and
how developers fix them in practice, we manually studied
four years’ (from 2013 to 2017) CVE entries related to
API usage bugs in National Vulnerability Database'. They
are extracted through approximate keywords matching (e.g.,
“OpenSSL API usage” and “incorrect SSL usage”) and contain
concrete patches to fix the bugs. We investigate both the CVE
description messages and patches, and identify two generic
incorrect usage patterns as shown in Figure 1:

o Certificate Validation. SSL libraries encapsulate the core
functionality of protocols and export APIs to utilize the
implementation. However, the client needs to validate all
kinds of certificates in applications. Missing validations
might allow attackers to cause a denial of service or man-in-
the-middle via an invalid one. Figure la shows an example
of such vulnerabilities reported in CVE-2015-0288 [15].
Function X509 get pubkey ()2 attempts to decode the
public key for x. If an error occurs, it will return NULL.
In function X509 to X509 REQ (), the return value
pktmp 1is used without checking the error code, which
results in a NULL Pointer Dereference bug. Beyond null
pointer checking, SSL libraries use various error protocols
in practice (e.g., 0 or negative for errors in OpenSSL, but
-1 to -403 in GnuTLS).

o Causal Function Calling SSL libraries allocate memory
resources for cryptography algorithm computing, which

Thttp://cve.mitre.org/
Zhttps://www.openssl.org/docs/manmaster/man3/X509 get pubkey.html

Location: OpenSSL/crypto/x509/x509_req.c: 70
X509_REQ *X509_to_X509_REQ(...){
[...]
pktmp = X509 _get pubkey (x);
// missing certificate validation of pktmp
6 + if (pktmp == NULL)
+ goto err;
i = X509_REQ set_pubkey(ret, pktmp);
9 EVP_PKEY_ free (pktmp) ;

|2 ~===== Correct Usage =====

13 Location: /crypto/x509/x509 _cmp.c: 390

14 int X509_chain_check_suiteb(...) {

15 [...]

16 pk = X509 get pubkey (x);

17 rv = check_suite_b(pk, -1, &tflags);

18 [...1

19 '}

20 static int check_suite_b (EVP_PKEY xpkey,...){

21 [...1]

22 // ensure pkey not NULL

23 if (pkey && ...)

24 [...1// error handling
25}

(a) Incorrect usage for missing certificate validation reported in
CVE-2015-0288 [15].

1 Location: OpenSSL:ssl/tl_lib.c: 3567

2 static int tls_decrypt_ticket(...){

3 EVP_CIPHER_CTX ctx;

4 [...]

5 EVP CIPHER CTX init (&ctx);

6 [...] // Check HMAC of encrypted ticket

7 if (CRYPTO_memcmp (tick_hmac, etick + eticklen, mlen))

8 + { EVP_CIPHER CTX cleanup (&ctx);
9 return 2;

10 +}

11 [...]

12 sdec = OPENSSL_malloc (eticklen);
13 if (!sdec){

14 EVP_CIPHER_CTX_cleanup (&ctx);
15 return -1;}

16 [...1]
17 EVP_CIPHER CTX cleanup (&ctx);

18 [...]

(b) Incorrect usage for missing releasing resource reported in CVE-
2014-3567 [16].

Fig. 1: Motivating examples of incorrect SSL API usages.

should release after their lifecycle by invoking a causal
function calling. Violations of such causal relation (i.e.,
a-b pattern) will cause a denial of service (memory con-
sumption) via an intentionally crafted input by remote at-
tackers. For example, EVP_CIPHER CTX_ cleanup ()>
clears all information from a cipher context ctx and free
up any allocated memory associated with it. However,
missing invoking it along the error handling path of
tls decrypt ticket () will be exploited by a crafted
session ticket that triggers an integrity-check failure as
shown in Figure 1b.

Detection of the above bugs is not trivial. It re-
quires a wide spectrum of semantics instead of simply
syntactic matching. For example, function invocation of
X509 get_ pubkey () at Line 16 in Figure la is correct,
because check suite b () validates the first parameter to
ensure that pkey is not NULL. To filter out such instance, it

3https://www.openssl.org/docs/man1.0.2/crypto/EVP_CIPHER CTX
cleanup.html

R 1_call X509_get_pubkey(x);

2_call X509_REQ_set_pubkey(ret,
X509_get_pubkey_arg0);

| 1 3_call EVP_PKEY_free(pktmp);

i i

i Source Code ! ! Cer_validation:
i listed in Figure 1a; I X509_get_pubkey != NULL! |
! o [

E Location: crypto/x509/x509_req.c: 70
1 Caller: X509_to_X509_REQ-Line2

E Missing error code check of

| X509_get_pubkey-Line4

E Potential Bugs:

| ID1-Caller: X509_to_X509_REQ-Line2
! Missing error code check of

| X509_get_pubkey-Line4

1

itz: 1_call X509_get_pubkey(x);
1 2_call check_suite_b(X509_get_pubkey_arg0,
H -1, &tflags);

' '
R L L e LR e e e L e L ;’"“““’"“" Filtering ID2:

| i
| ID2-Caller: X509_chain_*_suiteb-Line14 ;
! Missing error code check of |
E X509_get_pubkey-Linel7

Bug Reports II

checked at Line24

Phasel:
Building Analysis Contexts

Phase2: .
4[Program Path Traces J— Checking SSL API Usage ——{ Potential Bugs }—‘

Phase3:
Filtering Bug Results

Fig. 2: Overview of SSLDoc’s workflow.

demands a flow- and context-sensitive semantic analysis inter-
procedurally. Moreover, path-sensitive analysis also should be
taken into consideration to check memory leak along different
error handling paths (e.g., Line 14 and 17 in Figure 1b).

III. APPROACH

In this section, we introduce SSLDoc, a static analysis tool
to augment current SSL. API usage detection capability for
large-scale C programs. We first present a brief overview of
our approach with an example of Figure 1a and elaborate each
step of bug detection in the following parts.

As shown in Figure 2, SSLDoc takes the source code and
target APIs as input and generates bug reports with concrete
locations and reasons as output. Bug detection consists of three
basic steps. (1) In Phase-1, the analysis context is built by
constructing the control flow graph and creating program path
traces for each target API by employing under-constrained
symbolic execution. In this example, two traces, t1 and t2, are
generated, as shown in the box above Program Path Traces.
In this way, SSLDoc can successfully capture the usage con-
text of X509 get pubkey (), EVP PKEY free () and
those in between. (2) In Phase-2, SSLDoc employs the traces
to detect violations of API usages as potential bugs. For ex-
ample, two API-misuse instances of X509 get pubkey ()
are found for missing certificate validations labeled as Po-
tential Bugs. (3) In Phase-3, SSLDoc improves the detection
precision by leveraging inter-procedural semantics and usage
statistics. Then, the second misuse is filtered out for the check
conducted in the X509 to X509 REQ () at Line-24. We
discuss the details of our approach as follow.

A. Building Analysis Contexts

SSLDoc performs symbolic execution to generate program
path traces that capture rich semantic information for each

Source I >l lg.| Target
Code AP
| 3. Symbolic Trace Generation |

: ! !

Traces of APy Traces of API, Traces of AP,

Fig. 3: Workflow of building analysis contexts.

1. Building Control
Flow Graph

2. Target API Call
Sites Selection

target APL In Figure 3, we illustrate the workflow for building
analysis context, which consists of three steps. First, SSLDoc
parses the source code and builds a control flow graph (CFG).
Then, for each target API f, we select analysis entries as target
API call sites by labeling the callers C', which invokes f. Next,
for each caller ¢ € C, symbolic execution is employed to
generate a series of program path traces 7' with rich semantics
of usages of f while traversing the CFG.

We use N,Z to denote the set of non-negative and all
integers, respectively. In Figure 4, we formally describe the
structure of program path traces computed by SSLDoc, where
id € Nyn € N,z € Z and ap is short for Accesspath [17] to
represent memory locations in the form of regular expressions.
Each trace ¢ consists of a sequence of actions a™ with a
value map V. In particular, Assume action is used to capture
path-sensitive semantics. All the actions are labeled while
traversing CFG to support flow-sensitive analysis. V' records
the semantics from a symbolic variable sv to a concrete value
cv. A symbolic variable is defined by an action labeled by d
and the index n. For example, id f arg i denotes the it"
parameter of f called in the id*" action. In this way, we can
capture the invocation context semantics. We use f arg 0 to
represent the return value of f and arg 0O for the symbolic
variable returned by the caller ¢ of f in Return action.
Therefore, our program path trace is capable of capturing the
flow-, context- and path-sensitive semantics.

In Figure 5, We illustrate three traces of the example code
listed in Figure la. ¢; and t3 are original code snippets,
and t, is with the bug-fix patch. All traces start from the
action calling X 509 get pubkey (). Then, t; directly
passes the return value 1 X509 get pubkey arg 0 into
X509 REQ set pubkey () without certificate validation.
By contrast, ¢, validates the return value immediately. Even
though ¢3 passes it into check suite b () without valida-

(Traces) T ::=t
(trace) t == (id_a)™; V
(action) a ::= Assume(ezp) | Call f(sv™) | Return(sv)
(expression) exp ::= svl cmpop sv2
(value map) V' ::= sv — cv

(symbolic variable) sv ::= (id_f_arg_n)

(compare operator) cmpop :=1= | == | >= | > | <= | <
(concrete value) cv := z | ap | NULL
(function) f € F

Fig. 4: Abstract syntax of program path traces.

t; : 1_Call X509_get pubkey();
2_Call X509 REQ_set_pubkey(_, 1 X509 get pubkey arg 0) ;
ta : 1_Call X509_get pubkey();
2_Assume(l X509 get pubkey arg 0 != NULL) ;
3_Call X509_REQ_set pubkey(_, 1_X509 get pubkey arg 0) ;
tz : 1_Call X509_get pubkey();
2_Call check_suite_b(1_X509 get pubkey arg 0, ,);
2_Assume(1_X509 get pubkey arg 0 != NULL) ;

Fig. 5: Program path traces of the code in Figure 1a, where
we use “_” to represent values irrelevant.

tion, check _suite_ Db () checks the first parameter at Line
24 in Figure la.

Similar to the traditional analysis, the key challenge of
building such path traces in large and complex programs is to
overcome the path-explosion problem. We make two design
decisions to achieve scalability without sacrificing substantial
accuracy. (1) Limiting inter-procedural analysis. SSLDoc per-
forms symbolic execution intre-procedurally for each caller ¢
of the target API f at most two depth (i.e. we track ¢ and
callees of c). We refine the bug detection results by a filtering
phase with the deeper inter-procedural semantics presented in
Section III-C. (2) Unrolling loops. SSLDoc unrolls each loop
only once to reduce the number of paths explored. While this
restriction can limit the accuracy of the semantic computation,
it does not noticeably affect the accuracy of SSL API bug
detection for only a small number of usages related to loop
variables.

B. Checking API misuses

In the checking phase, SSLDoc employs target APIs
and the program path traces 7' to detect bugs. To con-
figure usage pattern of SSL APIs, we provide each target
f with a usage pattern type f.7, which can be certifi-
cate validation with a predicate P (e.g., X509 _get pubkey
I= NULL) and causal function calling with a us-
age pattern C (e.g., EVP CIPHER CTX init(argl) —
EVP_CIPHER_CTX_cleanup(argl), where argl labels the
target memory object). We illustrate our detecting algorithm
in Algorithm 1. First, we extract all the target functions into
APISet. For each API f, we detect API-misuse bugs along
the traces T that invoke f. Then, for each trace ¢ in T’, we
validate whether the usage pattern in f.7 are satisfied along
t. If a path fails, SSLDoc labels the call site of f along this
t as a potential bug. To check the satisfaction of certificate
validation along ¢, we compute the satisfiability of 7. That
is, whether there is an Assume action to ensure P. For usage
pattern C, we match with Call actions, which satisfy the target
memory object constraint. If any of the constraints fail to
match, SSLDoc reports a bug. For example, ¢; in Figure 5
fails to ensure the certificate validation X509 get pubkey
= NULL, which may result in a null pointer dereference bug.

C. Filtering Bug Reports

To achieve the scalability required to support real-world pro-
grams, we employ a limiting inter-procedural strategy to ad-

Algorithm 1 Algorithm for checking incorrect SSL. API usage

Input: program path traces 7', target APIs F
Output: bug report R

I: R<0

2: APISet < extractTargetAPISet(F)

3: for each API f € APISet do

4: T’ < extractPathTraces(f, T")
5: for each trace t € T’ do

6: result < satisfy(t, f.7T)
7 if (\result) then

8: R < addBug(t, f)

9: end if

10: end for

11: end for

12: return R

dress the path-explosion problem. The strategy generates false
positives when a usage cross more than two functions. How-
ever, developers dislike using tools with low precision [18].
Therefore, we apply deeper inter-procedural semantics and
rank the final results according to usage statistics.

First, we conduct semantic-based filtering. We attempt to
infer semantics acrossfunctions. For the missing validation of
certificate x, we further check the functions which directly
receive = as a parameter. If these functions contain sanity
check against x, we filter it out. For causal function calling
pattern as a — b, if the target memory object of a is directly
assigned to the parameter of the caller ¢ of a or returned by
¢, we check whether callers C of ¢ invoke b. We filter out the
cases that contain function invocation of b.

Then, we conduct a usage-based ranking. Basically, we
compute the number of correct/incorrect usage traces re-
spectively, ranks bug reports in decreasing order of their
likelihood of being bugs as H(f) = zgg ffggerfécfsjfgeelifjszsogfi
The highest likelihood value indicates that more correct usages
occur and the violations are less. Therefore, the violations are
highly buggy. Note that, we use the trace number instead of
call site number, because of the observation that many bugs
occur along path-branches with different context semantics.
However, we have to specially treat when H(f) is 0, because
it indicates that all the usages are buggy. The preliminary
experiment results show that it frequently occurs in small
programs which invoke SSL APIs only once or twice.

D. Implementation

SSLDoc is built in Java language. We preprocess the source
code into LLVM-IR 3.9*, which provides a typed, static
single assignment (SSA) and well-suited low-level language.
Then, we parse the LLVM-IR by javacpp® and construct an
extended control flow graph, which classifies the edges into
control edges for semantic computation and summary edges to
provide a mechanism to support large-scale programs. We have
integrated part of OpenSSL APIs with SSLDoc and provide
an interface to extend our analysis in a human-readable format
named Yaml 6.

“http://releases.llvm.org/3.9.0/docs/ReleaseNotes.html
Shttps://github.com/bytedeco/javacpp
Shttp://yaml.org/

IV. EVALUATION

In this section, we describe our results from incorrect SSL
API usage detection on large-scale open-source programs
using SSLDoc. We begin by providing the experimental setup.
Then we present the security-sensitive bugs we found and
concluding with lessons we learned.

a) Experimental Setup: We applied SSLDoc to find
incorrect SSL API usages in OpenSSL implementation as well
as applications using OpenSSL library in Ubuntu 16.04. Tar-
get applications are selected by search dependence attributes
using package management command line “apt-cache
rdepends libssl11.0. 07”. In total, we found more than
1200 packages using this library and selected 15 packages
which are open-source on Github and ongoing development.
For all the 16 programs, we detect incorrect usages in the
latest stable versions. Then, we use GNU cflow® to extract
target SSL APIs invoked in the applications and create usage
pattern mentioned in Section II according to the user manual
of OpenSSL’. In total, 136 different SSL. APIs are integrated
with SSLDoc. We ran SSLDoc on Ubuntu 16.04 LTS (64-bit)
with a Core i5- 4590@3.30 GHz Intel processor and 16 GB
memory.

b) Result: Overall, SSLDoc detected 45 previously un-
known security-sensitive incorrect SSL API usages as listed in
Table I. We tried our best to understand the context and created
issues for all the bugs to the developers of each program.
Up to now, 32 of the new bugs have been confirmed by the
developers and 27 have been fixed in the master branch.

For example, in Figure 6 we present a bug caused by incor-
rect validation of connect status in dma, a small Mail Transport
Agent, which is fixed at 12 hours after we submitted the bug
report with bug description and explanation of bug traces.
Function SSI. connect () initiates the SSL handshake with
a server. It returns 0 and negative integers to indicate SSL
handshake is not successful. However, the status validation in
dam/crypto.c only checked against negative integers, which
may cause a man-in-the-middle attack leading to leakage of
user credentials and emails messages.

V. DISCUSSION

While investigating the bug reports generated by SSLDoc,
we find several intricate bugs and gain useful experience
in the bug reporting process with open-source developers.
We share our following experience. (1) Incorrect SSL API
usages are not corner cases. In total, we find 45 previously
unknown incorrect usages. However, OpenSSL library has
provided well-format documentation and examples to guide
correct usages. These bugs may result from the lack of a bug
information sharing mechanism and the lack of API usage
constraints among client software developers. We believe
that bug fixing is an essential activity during the entire life
cycle of software development. Automatic bug-finding tools,

7In Ubuntul6.04 OpenSSL library is listed as libssl1.0.0.
8http://www.gnu.org/software/cflow/
%https://www.openssl.org/docs/manmaster/man3/

TABLE I: Previously unknown incorrect SSL. API usages
detected by SSLDoc

Index| Program |Issue ID | Target API Status
1 6567 |RAND_bytes vV
2 6568 |ASNI_INTEGER get 7
3 6569 |[ASNI_INTEGER_set vV
4 6570 | ASNI_object_size v
5 6572 |BN_set_word vV
6 6573 |HMAC_Init_ex v
7 OpenSSL 6574 |EVP_PKEY_get0_DH vV
8 1.1.1-pre8 6575 |EC_KEY_ generate_key v
9 6781 |[EC_GROUP_new_by_curve_name vV
10 6789 | ASNI_INTEGER _set vV
T 6820 |ASNI_INTEGER (o BN Ve
2 6822 |BN_sub e
13 6973 |EVP_MD_CTX_new vV
14 6977 | ASNI_INTEGER _set vV
15 6982 | OBJ_nid2obj vV
16 6983 |BN_sub vV
17 7235 | DH_set0_key v
18 dma 59 SSL__connect vV
19 . 2316 [X509 _NAME _oneline vV
20 exim 2317 |SSL_CTX set_cipher Tist a4
21 hexchat 2244 | BN_set_word v
22 2245 |DH_set0_key P
23 httping 41 SSL_CTX_ new v
24 ipmitool 37 MD2_ Init v
25 291 SSL_CTX_set_cipher_list vV

open-vm-tools

292 [X509_STORE_CTX_get_current_cert| v v~
27 irssi 943 SSL_ get_peer_ certificate P
28 - 944 BIO_read P
D | cepalive 1003 |SSL_CTX new Va4
30 1004 |[SSL_new vV
31 the-ipv6 28 BN _new vV
32 29 BN _set_word vV
33 2309 |BIO_new vV
34| FreeRADIUS 3 16—7: ASNT OBJECT Ve
35 4292 |SSL_CTX_new P
36 trafficserver 4293 [SSL_new P
37 4294 | SSL_ write P
38 tinc 205 BN __hex2bn vV
39 306 RAND_load_file vV
40 sslsplit 224 SSL_CTX_use_ certificate vV
7y P 225 |SSL_CTX_use PrivatcKey Va4
42 deskt 280 BN_ bin2bn P
a3 rdesktop 28T |BN_mod_exp P
44 36 SSL_ connect P
25| Proxytumnel oW P

v v is fixed, v* is confirmed without a patch, and P is wating developr responce.

Incorrect Error Check of SSL_connect() in dma/crypto.c
Ic3412 opened this issue on Sep 13, 2018 Description of bugs

i)

3 comments

1c3412 commented

Hi,
Function SSL_conne. Stap2: Explanation of bug traces

of function SSL_con

turn value
urn value 0.

N Certificate Validation: SSL connect arg 0 <= 0

Projects

f o

syslog(LOG_ERR, "r:

3

Chi Li, Zuxing Gu, Jiecheng Wu Notifications

Step3: Fixed in twelve hours after submitted.

renote delivery deferred: SSL handshake failed fatally: %s",

Fig. 6: Screenshot of a bug caused by incorrect validation of
SSL_ connet() status in dma, which is fixed at 12 hours.

such as SSLDoc, with large-scale analysis capability can be
integrated into the development cycle. In addition, SSLDoc
can be customized to incrementally address this problem.
(2) Accelerating manual auditing. SSL API usages usually
have similar behavior patterns. For example, many types of
vulnerabilities result from insufficient validation of input or
missing certificate validations. However, discovering all the
missing checks by human is tedious and time-consuming.
Automatic tools can efficiently accelerate the manual auditing
with differences extracted as good usages and bad usages.
For example, two of the API misuses were fixed within 12
hours after we created the issues with possible fixing patches,
as shown in Figure 6. (3) Intentional choices. We also find
that many incorrect usages are not mistakes but intentional
choices. Many error status code checks of return values are
ignored by developers. During the bug reporting process with
the OpenSSL developers, we learned that they intentionally
ignore some error code checks for performance considerations
or due to the lack of an error handling mechanism in C'°.

VI. RELATED WORK

A few works in the past have analyzed application vul-
nerabilities due to improper usage of SSL/TLS. Georgiev et
al. [7] employ dynamic analysis to conduct MITM attacks
and demonstrate that SSL certificate validation is completely
broken due to badly designed APIs of SSL implementations.
Later, Clark et al. [8] present a comprehensive survey of
SSL security and Brubaker et al. [9] apply Frankencerts, a
smart fuzzer to test SSL/TLS certificate validation code in
implementation. He et al. [11] develop SSLINT, a scalable,
automated, static analysis system for detecting incorrect cer-
tificate validation vulnerabilities in client programs with pre-
defined API signatures. To automatically infer usage pattern,
Yun et al. [12] present APISan to infer correct API usages
from source code without manual effort and detect various
properties with security implications. Moreover, generic bug
detection approaches also can be applied to SSL/TLS API
usage, such as static analysis approaches [19], [20] and test-
ing [21]. SSLDoc specifically targets SSL API usages in C
programs and complements these works. In addition, our work
can be easily extended to other domains.

VII. CONCLUSION

Client programs rely on APIs of libraries implementing
SSL/TLS protocols to ensure reliable communications. Incor-
rect usage of such APIs will cause security-sensitive prob-
lems, even severe vulnerabilities. In this paper, we present
SSLDoc, a static analysis detector to automatically diagnose
incorrect usages of SSL APIs in C programs. We instantiate
SSLDoc with APIs of OpenSSL and apply it to large-scale
programs. We find 45 previously unknown bugs in OpenSSL
implementation and 15 applications in Ubuntu which use SSL
APIs, out of which 27 have been fixed. We share the lessons
learned from bug detection and discussions with developers to

10https://github.com/openssl/openssl/issues/6575

motivate more researchers and practicers to combat incorrect
SSL API usages.

ACKNOWLEDGMENT

We thank the anonymous reviewers for their helpful feed-
back. This research is sponsored in part by National Natural
Science Foundation of China (Grant No. 61802259, 61402248,
61527812), National Science and Technology Major Project
of China (Gran No. 2016Z2X01038101), and the National Key
Research and Development Program of China (Grant No.
2015BAG14B01-02, 2016QY07X1402).

REFERENCES

[1] T. Dierks and E. Rescorla, “The transport layer security (tls) protocol
version 1.2, Tech. Rep., 2008.

[2] A. Freier, P. Karlton, and P. Kocher, “The secure sockets layer (ssl)
protocol version 3.0,” Tech. Rep., 2011.

[3] “Openssl: cryptography and ssl/tls toolkit.” https://github.com/openssl/
openssl, 2019.

[4] “Gnutls: a secure communications library implementing the ssl, tls and
dtls protocols and technologies around them.” https://gitlab.com/gnutls/
gnutls/, 2019.

[5] “Cve-2016-2182."
CVE-2016-2182, 2016.

[6] “Cve-2016-2113,”
CVE-2016-2113, 2016.

[71 M. Georgiev, S. Iyengar, S. Jana, R. Anubhai, D. Boneh, and
V. Shmatikov, “The most dangerous code in the world: validating SSL
certificates in non-browser software,” in CCS’12, Raleigh, NC, USA,
October 16-18, 2012, 2012, pp. 38-49.

[8] J. Clark and P. C. van Oorschot, “Sok: SSL and HTTPS: revisiting past
challenges and evaluating certificate trust model enhancements,” in SP
2013, Berkeley, CA, USA, May 19-22, 2013, 2013, pp. 511-525.

[9] C. Brubaker, S. Jana, B. Ray, S. Khurshid, and V. Shmatikov, “Using

frankencerts for automated adversarial testing of certificate validation in

SSL/TLS implementations,” in SP 2014, Berkeley, CA, USA, May 18-21,

2014, 2014, pp. 114-129.

A. Delaitre, B. Stivalet, E. Fong, and V. Okun, “Evaluating bug finders

- test and measurement of static code analyzers,” in COUFLESS 2015,

Florence, Italy, May 23, 2015, 2015, pp. 14-20.

B. He, V. Rastogi, Y. Cao, Y. Chen, V. N. Venkatakrishnan, R. Yang,

and Z. Zhang, “Vetting SSL usage in applications with SSLINT,” in SP

2015, San Jose, CA, USA, May 17-21, 2015, 2015, pp. 519-534.

I. Yun, C. Min, X. Si, Y. Jang, T. Kim, and M. Naik, “Apisan: Sanitizing

API usages through semantic cross-checking,” in USENIX Security 16,

Austin, TX, USA, August 10-12, 2016., 2016, pp. 363-378.

D. A. Ramos and D. R. Engler, “Under-constrained symbolic execution:

Correctness checking for real code,” in USENIX Security 15, Washing-

ton, D.C., USA, August 12-14, 2015., 2015, pp. 49-64.

“Curl: A command line tool and library for transferring data with url

syntax.” https://github.com/curl/curl, 2019.

“Cve-2015-0288,” https://www.cvedetails.com/cve/CVE-2015-0288/,

2015.

“Cve-2014-3567,"

CVE-2014-3567, 2015.

B. Cheng and W. W. Hwu, “Modular interprocedural pointer analysis

using access paths: design, implementation, and evaluation,” in PLDI

2000, Vancouver, Britith Columbia, Canada, June 18-21, 2000, 2000,

pp. 57-69.

A. Bessey, K. Block, B. Chelf, A. Chou, B. Fulton, S. Hallem, C. Gros,

A. Kamsky, S. McPeak, and D. R. Engler, “A few billion lines of code

later: using static analysis to find bugs in the real world,” Commun.

ACM, vol. 53, no. 2, pp. 66-75, 2010.

A. Arusoaie, S. Ciobaca, V. Craciun, D. Gavrilut, and D. Lucanu,

“A comparison of open-source static analysis tools for vulnerability

detection in c/c++ code,” in SYNASC 2017, 2017, pp. 161-168.

S. Amann, H. A. Nguyen, S. Nadi, T. N. Nguyen, and M. Mezini, “A

systematic evaluation of static api-misuse detectors,” IEEE Transactions

on Software Engineering, pp. 1-1 (Early Access), 2018.

M. Kassab, J. F. DeFranco, and P. A. Laplante, “Software testing: The

state of the practice,” IEEE Software, vol. 34, pp. 46-52, 2017.

http://cve.mitre.org/cgi-bin/cvename.cgi?name=

http://cve.mitre.org/cgi-bin/cvename.cgi?name=

[10]

[11]

[12]

[13]

[14]
[15]

[16] http://cve.mitre.org/cgi-bin/cvename.cgi?name=

(17]

(18]

[19]

[20]

[21]

