
Investigating the Effects of Agile Practices and

Processes on Technical Debt - The Viewpoint of the

Brazilian Software Industry

Vivyane Coelho Caires
PPGCOMP, Salvador University
Federal Institute of Bahia-IFBA

Jequié/Vitória da Conquista, Brazil
vivyane.caires@ifba.edu.br

Nicolli Rios

Department of Computer Science,

Federal University of Bahia
Salvador, Brazil

nicollirioss@gmail.com

Johannes Holvitie

TUCS - Turku Centre for Computer

Science & University of Turku
Finland

jjholv@utu.fi

Ville Leppänen

TUCS - Turku Centre for Computer

Science & University of Turku
Finland

ville.leppanen@utu.fi

Manoel G. de Mendonça Neto
Department of Computer Science,

Federal University of Bahia

Fraunhofer Project Center @ UFBa
Salvador, Brazil

manoel.mendonca@ufba.br

Rodrigo Oliveira Spínola
PPGCOMP, Salvador University

Fraunhofer Project Center at UFBA

Salvador, Brazil
rodrigo.spinola@unifacs.br

Abstract—The current scenario of software development is

characterized by a wide adoption of agile methodologies, which

define processes and practices that address a range of problems

faced by development teams. However, there is still little

information on how these methodologies deal with technical

debt(TD). This work presents the results of a replicated

survey(originally executed in Finland) whose goal was to

investigate which agile practices and processes are sensitive to

TD. Despite this replication allows different types of analysis, the

focus of this paper will be on the analysis of the effects of the agile

practices and processes on TD from the perspective of the

Brazilian software industry, where the study was replicated. At

total, 62 practitioners from different organizations answered the

questionnaire. The results indicated that participants already had

a good knowledge about TD, instances of TD reside in the

software implementation and are caused due to deficiencies in its

architecture, the size of a debt item is proportional to its impact

on the project, and, refactoring and iteration have the most

positive effect on TD. This replication also contributes to the

investigated topic through the accumulation of evidence about

the findings, thereby increasing the level of confidence in results.

Keywords-Technical debt; agile methodology; survey; replicated

study.

I. INTRODUCTION

Technical debt (TD) represents the effects of immature
artefacts that bring short-term benefits in terms of increased
productivity and lower costs, but which may need to be
adjusted later with interest during software development [1, 2,
3]. TD is usually incurred when development teams have to
choose between to evolve the system considering quality
standards or to put it to run in the shortest possible time, using
minimum resources. As TD is incurred in a project, the effort
required to eliminate it is cumulative and its payment tends to
become more complex. Different types of debt may occur
during the phases of a software development process and the
used methodology can affect their presence [4]. An inadequate

management of TD can bring significant losses to a software
project [7].

The current scenario of software development is
characterized by a wide adoption of agile methodologies,
which define processes and introduce practices that address a
range of problems currently faced by development teams [5].
However, there is still little information on how these
methodologies accommodate the concept of TD. To shed some
light in this discussion, Holvitie et al. [9] conducted a survey
with practitioners from Finland on how TD issues relates to
agile software processes and practices. They investigated
participants’ level of knowledge on TD, how TD manifests
itself in their projects, and what processes and practices of agile
development are sensitive to it. In general, the study pointed
out that the processes and practices that are closest to the
implementation and maintenance activities are perceived as
having the most positive effects on the control of TD. In
addition, the authors also identified that TD items usually come
from problems in the software architecture.

Although the surveys’ results are valid, the work of
Holvitie et al. [9] is also limited by some issues. The main one
is that the data were collected from development companies
based in Finland and, therefore, the results may reflect only the
local scenario. To deal with this, an international consortium
involving researchers from Finland, Brazil and New Zealand
worked together to replicate the survey in their respective
countries. The goal of this set of replications was investigate
whether the findings of the Holvitie’s study are reproducible.
Results from the whole gathered data were reported in [10].
However, as the results presented in [10] did not consider the
specificities of each involved country (the whole dataset was
analyzed as an only instance), an in-depth analysis of the
results of each individual replication is still missing. This kind
of analysis can reveal hidden details that could not be perceived
in a generic look at the data. More specifically, it can reveal
how software practitioners perceive impacts that agile practices

DOI reference number: 10.18293/SEKE2018-131

and processes have in TD considering the local software
industry reality that usually differs from other places when we
consider variables like the size of organizations and
development teams, and the size and duration of software
projects.

This work presents the results of the replication 1 of the
study of Holvitie et al. [9] in Brazil, a country located in
another continent and with a culture different from Finland.
Despite the fact of this replication allows different types of
analysis (for example, comparison between the results from
each country), the focus of this work is to discuss the results of
the replication in Brazil. Thus, we will present an analysis on
the effects of the agile software development practices and
processes on TD from the perspective of the Brazilian software
industry. We will discuss the answers to the following research
questions: RQ1 - What is the level of knowledge of respondents
about TD?; RQ2 - Which agile software development practices
and processes are sensitive to TD?; and RQ3 - How does TD
manifest itself in the participants' work?

To replicate the survey, we used a web-based questionnaire
that was answered by 62 practitioners (mostly characterized by
professionals with more than 6 years of experience) from 62
different software organizations. In general, the results
indicated that the participants already had a good knowledge
about the concept of TD, but some of them are still not familiar
with the term. In another finding, we could observe that many
instances of TD reside in the software implementation and are
caused due to deficiencies in its architecture. We also identified
that the size of a debt item is proportional to its impact on the
project. Finally, considering all analyzed agile software
development practices and processes, most of respondents
indicated that refactoring (practice) and iteration (process) have
the most positive effect on TD.

In addition to this introduction, this paper has five more
sections. In Section II, the replication of the survey in Brazil is
described. The effects of the agile software development
practices and processes in TD are presented in Section III.
Section IV discusses the obtained results. Next, limitations of
the study are presented in Section V. Finally, Section VI
presents some final remarks.

II. SURVEY REPLICATION - BRAZIL

A. Survey

The goal of the research performed by Holvitie et al. [9]
was to investigate which agile software development practices
and processes are sensitive to TD. They conducted a survey,
structured in three groups of questions, considering a
population of practitioners.

The first group of questions aims to establish the level of
knowledge of the respondents about software development and
how they perceive TD in their projects. For this, the research
questions were defined as, for an individual: (RQ1.1) does
work experience, (RQ1.2) do used agile development practices,
or (RQ1.3) do associated project responsibilities correlate with

1 Replication based on previous insights is widely recommended in the

experimental paradigm [13]

what the respondent perceives his/hers assumed or actual TD
knowledge to be?; (RQ1.4) in which mediums has he/she seen
or heard the term TD be used?; (RQ1.5) in which situations has
he/she or his colleagues applied the concept of TD?, and;
(RQ1.6) in which situations does he perceive the use of the TD
concept as helpful? During this first stage, the authors also
present the McConnell’s definition of TD [7], ensuring that all
participants know the term.

In the second stage, there is a set of questions about which
agile development practices and processes are used by
respondents in their projects and how they realize that their use
affects TD. We established that the XP practices together with
Scrum processes cover the components of agile software
development well in addition to being highly popular [11, 12].
Questions of this stage intend to answer the following research
questions: are there certain agile software development
practices or processes for which (RQ2.1) their effect on
technical debt is seen to be significantly positive, neutral or
negative?; (RQ2.2) it is seen that they (do not) cover the team’s
or the project’s development management needs?, and; (RQ2.3)
it is seen that they (are not) able to cover TD issues that require
management?

In the third stage of the survey, participants are asked to cite
particular instances of TD and, from that concrete instance,
answer the following research questions: for a concrete
instance of technical debt, (RQ3.1) in which phase of the
software development it was observed?; (RQ3.2) what are the
causes for its emergence?; (RQ3.3) is it legacy?; (RQ3.4) is its
size dynamic?, and; (RQ3.5) does its effects correlate with its
size?

In total, the questionnaire has 37 questions (35 objective
and 2 subjective) and collects the following information: (i)
participants’ knowledge on software development; (ii)
organizational details (such as participants’ role in the project,
number of projects developed by the company, number of
people involved in a given project); (iii) agile development
processes and practices that are applied; (iv) interviewee’s
knowledge on TD; (v) perception of the development phases
affected by TD; and (vi) an example of an artifact affected by
TD, the size of that debt item and its perceptible effects. The
survey, available at http://soft.utu.fi/tds16/questionnaire.pdf,
was developed as a web-based form in order to increase the
response rate and minimize data manipulation errors. Google
Forms platform was used for building, distributing, and
collecting survey data.

B. Survey Brazil

When we decided to replicate the survey in Brazil, it was
already designed and all the instruments were available.
Therefore, in this section we focus on the details of how we
planned and operated the replication in Brazil. Further
information on the design of the survey can be found in [9].

To plan the survey replication in Brazil, we held a couple of
discussions with the general organizers. During the discussions,
the online questionnaire was presented and some general
guidelines for conducting the survey were provided. Thus, the
configuration of the environment was performed and then the
participants were invited by e-mail to contribute with the

http://soft.utu.fi/tds16/questionnaire.pdf

research. Participants were selected through software
associations or local industry contacts. In this process, we tried
to reach practitioners spread out in different regions in Brazil.

In total, 62 professionals from different software
development organizations answered the survey. Regarding the
size of the organizations in terms of number of employs, 44%
of the respondents work on organizations with over 250
employs. A significant number (30%) of answers were also
obtained from participants of organizations that have between
10 and 50 employs. 10% of the participants work on small
companies with less than 10 employs. Finally, 16% of the
respondents indicated that work on companies that have
between 51 and 250 employs. The development teams in which
participants are involved in are mainly characterized as small
teams (42%, 2-5 members). 25% of the respondents work on
teams that have between 6-10 members. We also had answers
from teams with over 20 members (10%). The other
participants are part of very small or middle size teams.

The length of projects in which participants are working on
has the following distribution: 1-3 months (23%), 4-6 months
(31%), and over 6 months (38%). Regarding development
iteration length, the answers are distributed as follows: one
week or less (18%), 2-3 weeks (26%), 1 month (10%), 2
months (5%), over 2 months (10%), no iteration (20%).
Finally, concerning respondent level of experience,
approximately 15% of the respondents have less than 3 years of
software development experience, slightly more than 20% have
between 3 and 6 years, and 65% have more than 6 years. The
average time to complete the questionnaire was 15 minutes.

To ensure a standardized data analysis in relation to the
work of Holvitie et al. [9] and make possible a future
comparison between them, we forwarded the responses to the
general organizers, which applied the same analyzes carried out
in the study performed in Finland. Then, they returned the
results and we could interpret them.

III. RESULTS

In this section, we discuss the survey results concerning (i)
what is the level of knowledge on TD of the participants, (ii)
what agile software development practices and processes are
perceived as sensitive to TD, and (iii) how TD manifests itself
in their work.

A. RQ1 - What is the level of knowledge of respondents about

TD?

Research questions grouped by RQ1 are focused on
participant’s perception on the concept of TD. For this,
participants are initially asked about how they perceive their
knowledge on TD, followed by a request for them to
(optionally) describe their definition of the term. These answers
were classified according to respondents’ work experience
(RQ1.1), applied software development techniques (RQ1.2)
and assumed roles (RQ1.3). There was no significant
difference between the distributions of these variables. Thus,
the most general one is presented here. From Figure 1, it is
observed that 32% of the respondents considered having a good
or very good definition of TD, however, almost 50% of them

indicated that they did not know the term or had a poor
definition of it.

Next, the McConnell’s definition of TD [7] was presented
and, then, the respondent was asked to indicate how close to
this concept was his initial understanding. The results are
represented in Figure 1 and indicate that about 70% of
respondents reported that their definition were close to or very
close to the definition extracted from the technical literature.
Besides, slightly more than 20% reaffirmed not knowing the
term or having a poor definition of it. These data indicate that
participants were initially reticent about their understanding on
concept of TD, but that most of them (80%) really already
knew it. Other surveys performed in the area have pointed out
this same behavior [6][9].

Complementing this analysis, Figure 2 presents the
relationship between the experience of survey participants,
their previous knowledge on TD and their knowledge after the
definition be presented in the questionnaire. We can see that for
interviewees with less than 3 years of experience, 5% had a
good or very good definition for TD, 8% had a poor or very
poor definition, and 2% reported not knowing the term. After
reading the definition presented in the survey, the percentages
passed to 11%, 2% and 2%, respectively. For participants who
had experience between 3 and 6 years, 3% indicated having a
good or very good definition for TD, 16% a poor or very poor
definition and 2% indicated not knowing the term. After
reading the definition, the percentages passed to 10%, 2% and
10%, respectively. Finally, for the most experienced
participants (more than 6 years of experience), 25% reported
having a good or very good definition for TD, 29% had a poor
or very poor definition, and 11% reported not knowing the
term. This percentage changed to 49%, 10% and 6%,
respectively, after reading the TD concept presented.

Then, the respondents were asked where they had either

Figure 1. Distribution for perceived TD knowledge

Figure 2. Relationship between interviewees' experience and

knowledge on TD concept

seen or heard the term TD used (RQ1.4). The questionnaire
provided seven initial options that can be observed in Figure 3.
We can see that more than 50% have seen the term in the
technical literature. Surprisingly, about 40% of the respondents
reported the term has been used in work meetings. It is also
important to mention that over 15% of respondents never had
heard the term before.

Finally, closing the analysis of RQ1, a mapping of common

decision situations in development is shown in Figure 4. We
asked participants whether, for each situation, he/she or a co-
worker had already applied the concept of TD (RQ1.5) and
whether the use of the concept would have been useful
(RQ1.6). The data show that more than half of the respondents
realized the utility of using the concept of TD in all situations
and only 5% reported that its use would not bring gains.

Still on Figure 4, 27% of respondents reported that they
have already applied the concept of TD in unforeseen
situations, almost 20% in decisions about development
infrastructure, about 20% in integrated resources, and 35% in
conduction of software development. From the perspective of a
co-worker, 27% reported that a colleague had already used the
term TD in unforeseen situations, 18% in issues involving
development infrastructure, 10% in integrated resources, and
almost 30% in the conduction of software development. It is
worth mentioning that more than 50% of respondents never
used the TD concept in decision-making in any of the
situations.

B. RQ2 - Which agile software development practices and

processes are sensitive to TD?

The RQ2 group of questions is focused on investigating the
effects of agile software development practices and processes
on TD. For this, initially the questionnaire presented a list of 11
agile development practices [11] and, for each of them, the
interviewee should indicate how positively/negatively it could
impact the TD in the project (RQ2.1). The results presented in
Figure 5 demonstrate that practices used during implementation
phase (simple design, TDD, coding standards, refactoring,
continuous integration, and pair programming) are considered
by more than half of the interviewees as having a positive or
very positive effect on TD. More specifically, refactoring was
indicated as the practice that has the most positive effect.

Afterwards, we asked participants about the effect of agile
development processes on TD (RQ2.1). For this, a list of six
processes [12] was considered. As we can see in Figure 6, all
processes (iteration planning meetings, iterations, iteration
backlog, iterations reviews/retrospectives, daily meetings, and
product backlog) were considered to have very positive or
positive effects on TD. The iteration process was considered
the most positive among them.

We also asked if the combination of agile techniques that
participants used were adequate for the team’s or the project’s
management needs (RQ2.2) and if the techniques were able to
cover all aspects that require management (RQ2.3). For
singular practices, processes and their adoption rates, not a
single combination could be identified for which the difference
in their management or cover characteristics was statistically
significant.

Figure 4. Respondent’s application and perceived usefulness of

applying the TD concept

Figure 5. Perceived effect of agile software development practices on TD

Figure 3. Technical debt usage in different mediums

Figure 6. Perceived effect of agile development processes on TD

Finding 1: The concept of TD is already known by a large
part of the population represented in this study. On the
other hand, practitioners are still assimilating the concept.

Finding 2: The usefulness of using the TD concept in
development activities is recognized.

RQ3 - How does TD manifest in the participants’ work?

The group of questions RQ3 is focused on the analysis of
situations that TD affected the progress of projects in which the
participants were involved. When asked about in which phase
of the software development the TD was observed (RQ3.1), as
we can seen in Figure 7, 77% of respondents stated that the
implementation phase is the most affected, followed by design
phase. Although the testing phase was reported as the least
affected, its percentage is still relevant.

We also investigated the causes that led to the occurrence
of debt (RQ3.2). To do this, from a previously defined list of
causes [2], the participant should indicate which of them he/she
considered pertinent. In Figure 8, we can see that the causes
most often indicated by participants were inadequate
architecture and inadequate structure, followed by violation of
best practices or style guides, and inadequate testing and
documentation. This result is aligned with findings reported by
Ernst et al. [6] that also pointed to problems in architecture as
the main source of TD in software projects.

In addition to this question, when asked about the source of
TD instances (RQ3.3), most participants (50%) stated that TD
instances came from the legacy from an earlier team/individual
who previously worked on the same project/product. 18% of
the participants indicated that their source is in the legacy from
an unrelated project/product of the organization, and 14%
stated that the source is in the legacy from outside the
organization. Only 18% of participants answered that the
source is not from legacy activities.

Then, when asked about the relationship between the
continued development of a component and the size of the debt
located in that component (RQ3.4), most of participants (82%)
reported that the continued development would contribute to
the increase in the size of the debt, while only 18% reported
that this would lead to a reduction in the size of the debt. None
of the respondents indicated that there would be a large
decrease or no change.

Finally, when asked about the correlation between the size
of a TD item and the effects that it causes in software
development (RQ3.5), about 70% of the respondents answered
that the size is directly proportional to the magnitude of the
effects, 5% stated that it is not proportional, and another 5%
answered that it is inversely proportional. Other 23% reported
that the size is somehow proportional to effects magnitude.
Thus, for most respondents, the larger is the size of a debt item,
the greater is the effect it brings to the project.

IV. DISCUSSION

This work presented the results of a replicated survey in
Brazil. For RQ1, we found that the concept of TD is already
known by a good part of the population represented in this
study. Regarding RQ2, we observed that, in general, agile
software development practices and processes have a positive
effect on TD. In this item we highlight the refactoring practice
and the iteration process, which were considered as having the
most positive effect. Finally, for RQ3, the data indicated that
the implementation phase is the most affected by debt items,
and problems associated with the architecture and internal
structure of the software are the main causes of TD. These
results justify, at a certain extension, the fact that agile
practices that have a more positive effect on TD are directly
related to coding activities.

Another result from RQ3 indicated that continued
development in a software item contributes to the increase in
TD in that item. This is an interesting result because if, on the
one hand, continuous work on an item opens opportunities for
improvements in its internal structure (that can lead to payment
of debt items), on the other hand, if we do not explicitly
manage TD, these opportunities can be lost and, as
consequence, the debt size can reach higher levels. Finally,
participants also reported that there is proportionality between
debt size and the effects it brings to the project. These two

Finding 1: The implementation phase is, usually, the most
affected by TD.

Finding 2: Inadequate software architecture and internal
structure are the main causes of TD.

Finding 3: Debt items tend to come from the legacy of a
team/individual who previously worked on the same
project/product.

Finding 4: Continued development in a software item
contributes to the increase in TD's size on that item.

Finding 5: The larger the size of a TD item is, the greater is
the effect it brings to the project.

Finding 1: In general, agile practices have a positive effect
on the TD. Among the analyzed practices, refactoring was
considered to have the most positive effect.

Finding 2: In general, agile processes have a positive
effect on the TD. Among the considered processes,
iteration was indicated as having the most positive effect.

Figure 7. Distribution of TD by project phases

Figure 8. Indicated causes for concrete instances of TD

results reinforce the importance of making explicit the
management of the TD items.

A. Relation to previous work

The results of this replication indicated that the population
has different characteristics from the original study [9]: (i)
Finland sees a majority in the smaller organization size
categories and Brazil is in the middle ground with highs in
medium and large categories; (ii) Finland had average iteration
length of two to three weeks whereas Brazil is more evenly
distributed (from 1 week to more than 2 months), and (iii)
projects in Brazil tend to be longer and Finland's shorter. Thus,
on the perspective of the population characterization, we could
say that this replication contributes to the original study by
expanding the sample from the organization spectrum. Besides,
it also indicates that the obtained results reflect particularities
of the Brazilian local scenario of agile software development.
Concerning participants’ level of experience, country-wise
deviation is almost non-existent.

Regarding results for research questions, despite in general
both executions pointed out to the same direction, we also
could detect particularities. For example, respondents from
both countries answered that common agile practices and
processes are sensitive to technical debt. However, while in
Brazil refactoring and iteration are considered as having the
most positive effects on TD, in Finland, participants indicated
coding standards and iteration reviews/retrospectives. A more
detailed analysis of differences and similarities between the
results obtained with the execution of the survey in Finland and
its replication in Brazil is out of the scope of this paper, being
part of the next steps of this research.

V. STUDY LIMITATIONS

Some limitations apply to this study. One of them is related
to the cultural influence of the region where the survey was
performed. Although the questionnaire was answered by
participants from different companies of different sizes and
based in different regions from Brazil, yet the "Brazilian way"
of developing software may have influenced the responses. A
detailed analysis considering this aspect is outside the scope of
this paper, but it is a future work that will be carried out by the
authors considering the data obtained with the execution of the
survey in Finland and its replication in Brazil.

A second limitation that affects this study is related to the
lack of control over the participants invited to participate in the
research. It could happen that only developers interested in the
TD area participate of the study. This might bias the results
towards a more positive view of technical debt knowledge.
However, about 50% of the respondents initially indicated that
they were not familiar with the concept and thus we assume
that this positive bias is not significant.

Finally, although the number of responses (62) can be
considered good, yet the data cannot be generalized to
represent practitioners from Brazilian software industry. Still,
they provide valuable indicators on the research questions
raised. Their analysis together with the data obtained from the
original execution of the study in Finland will allow a greater
level of confidence in the results.

VI. FINAL REMARKS

This work is aligned with a growing concern of the
software engineering community: the replication of empirical
studies. It contributes to the generation of knowledge in a given
topic through the accumulation of evidence about the findings,
thereby increasing the level of confidence in results [13].

Specifically, this replicated study investigated the
perception of practitioners on TD concept, the effects of agile
software development practices and processes on it, and how
TD manifests itself in practice in the Brazilian software
industry. The reached results, described in details on Sections
III and IV, contribute to the improvement of the body of
knowledge that has been built around the Technical Debt
Landscape [3] [8]. The next steps of this research include a
country level comparison of the obtained results.

ACKNOWLEDGMENT

This work was partially supported by the CNPq Universal
grant 458261/2014-9, by the State of Bahia's SECTI-
Fraunhofer-UFBa cooperation agreement 2012-1, and by the
RESCUER project Grant: 490084/2013- 3.

REFERENCES

[1] C. Seaman & Y. Guo (2011), Measuring and Monitoring Technical
Debt, Advances in Computers 82, 25-46.

[2] P. Kruchten; R. Nord & I. Ozkaya (2012), Technical Debt: From
Metaphor to Theory and Practice, Software, IEEE 29(6), 18-21.

[3] C. Izurieta; A. Vetro; N. Zazworka; Y. Cai; C. Seaman & F. Shull
(2012), Organizing the technical debt landscape, in Managing Technical
Debt (MTD), 2012 Third International Workshop on, pp. 23-26

[4] N.S.R. Alves, T.S. Mendes, M.G. Mendonça, R.O. Spínola, F. Shull, and
C. Seaman, Identification and management of technical debt: A
systematic mapping study, Information and Software Technology,
Volume 70, February 2016, Pages 100-121, ISSN 0950-5849.

[5] R. C. Martin, Agile software development: principles, patterns, and
practices. Prentice Hall PTR, 2003.

[6] N.A. Ernst, S. Bellomo, I. Ozkaya, R.L. Nord, and I. Gorton. 2015.
Measure it? Manage it? Ignore it? software practitioners and technical
debt. In Proc. of the 2015 10th Joint Meeting on Foundations of
Software Engineering. ACM, New York, NY, USA, 50-60.

[7] S. McConnel, “Managing Technical Debt,” Construx Software, Version
1. Available from: http://www.construx.com, 2008

[8] N.S.R. Alves, R.S. Araújo, R.O. Spínola. A Collaborative
Computational Infrastructure for Supporting Technical Debt Knowledge
Sharing and Evolution. In: Americas Conference on Information
Systems, 2015, Puerto Rico.

[9] J. Holvitie; V. Leppanen & S. Hyrynsalmi (2014), Technical Debt and
the Effect of Agile Software Development Practices on It - An Industry
Practitioner Survey, in MTD 2014, pp. 35-42.

[10] J. Holvitie, S.A. Licorish, R.O. Spínola, S. Hyrynsalmi, S.G. MacDonell,
T.S. Mendes, J. Buchan, and V. Leppänen. Technical debt and agile
software development practices and processes: An industry practitioner
survey. Information and Software Technology, 2017, ISSN 0950-5849.

[11] N. Kurapati, V. S. C. Manyam, K. Petersen, Agile software development
practice adoption survey, in: Agile processes in software engineering
and extreme programming, Springer, 2012, pp. 16{30.

[12] D. West, T. Grant, Agile development: Mainstream adoption has
changed agility 2 (41).

[13] F. Shull, J.C. Carver, S. Vegas, and N. Juristo. 2008. The role of
replications in Empirical Software Engineering. Empirical Software
Engineering. 13, 2 (April 2008), 211-218.

