Conceptual Software: The Theory Behind Agile-
Design-Rules

laakov Exman

Software Engineering Department
The Jerusalem College of Engineering — JCE - Azriel
Jerusalem, Israel
iaakov@jce.ac.il

Abstract—Software practices often evolved sets of efficient
software design rules embodying together a kind ahethodology.
However, methodologies per se are no substitute f@ rigorous
software theory. Methodologies can live side by sdwith a
software theory which explains and justifies the wdely accepted
wisdom of the field. This paper shows that Linear 8ftware
Models, an algebraic Software Theory together witlits basis, the
Conceptual Integrity principles, indeed explain the deeper
contents of the so-called “four rules of simple dégn”, which we
concisely name as Agile-Design-Rules. These rul® a succinct
expression of agile design methodologies that emed from
Extreme Programming (XP). Thus one obtains the bedbenefits
from Software Theory and methodology co-existencel®, the
explained rules reinforce the Software Theory pladibility; 2 ",
the Software Theory selectively clarifies roles ahe Agile-Design-
Rules enabling quantitative calculations for theirapplication in
practice; 39 co-existence leads to the idea ddesign Testsas
illustrated by case studies.

Keywords: Conceptual Software; algebraic Softwarkeebry; Agile-
Design-Rules; Software Design; Linear Software Mdste
Modularity Matrix; Modularity Lattice; Conceptual htegrity;
Propriety; Orthogonality.

. INTRODUCTION

A well-known set of rules for software system dasigthe
so-called “four rules of simple design” which wencsely
name as Agile-Design-Rules. These rules werefbirstulated
by Kent Beck (see page 57 in [2]) at the end ofgrevious
century, within the context of Extreme Programm(sge e.g.
[3]), commonly abbreviated as XP. This well-knokind of
agile design methodology had a significant inflleenan
approaches to practical software system development

Some outstanding XP development characteristicarg]

e Simple Design— expressed, e.g. by the Agile-

Design-Rules;

e Tests— software development is driven by tests

written and run in parallel to the software itself.

e Pair Programming— production code is often
written by two people at one
screen/keyboard/mouse.

DOI: 10.18293/SEKE2018-182

We claim, that however successful in practice, any
development methodology such as XP is no substfutea
rigorous Software Theory. On the other hand, arthéatally
disconnected from practical directives in a fielchimently
application-oriented such as Software Engineesngf ho use.

This paper has two-way goals: a- to argue thatipebraic
Software Theory is a rigorous basis for applicabddtware
design methodologies; b- to show that the Agileige®Rules
essence is selectively explained and justified Hey referred
Software Theory. We introduce the Agile-Design-Ruléhe
basics of Conceptual Software design, and the edgehinear
Software Models.

A. Agile-Design-Rules for Software
Development

There are several formulations of the Agile-Dedryries,
differing by the wording of each rule and the rulasler. The
rules’ essence is common to all formulations. Here choose
a formulation by Ron Jeffries [25], reordering si2and 3:

1. Test Everything — All the tests for the SUD
(Software Under Development) are passing;

2. Explicit Intent — Express the ideas the software’s
author wants to express;

3. Eliminate Duplication— Contain no duplicate code;

4. Minimize Entities— Minimize classes and methods.

The selective interpretation of these rules will digen
later on in this paper, after the theory basicseapained.

B. Conceptual Integrity

Conceptual Integrity is a deep software design idea
proposed by Frederick Brooks [6], [7], much earligan the
Agile-Design-Rules. Historically, the earlier ideasre not
recognized as the basis for the practical rules.

Three principles suggested by Brooks [6] were Vgrbaot
formally, explained by Jackson et al. [10], [234]. We focus
on the two most relevant to clarify Agile-Designi€au

1. Orthogonality — individual functions should be
independent of one another;

2. Propriety — a product should have just the
functions essential to its purpose and no more;

The Conceptual Integrity principles can be exprsise
terms of modularity and design simplicity. Orthogtity is a
basic modularity mechanism. Propriety is an optatian: the
fewer the functions performingxactly the same tasks, the
simpler the software product. One immediately peesetheir
relevance to the Agile-Design-Rules. Full interptien will
follow from the theory, presented next.

C. Linear Software Models: the Modularity
Matrix and the Modularity Lattice

We concisely characterize two Linear Software Msdel
algebraic structures, representing a software sysidese are
the Modularity Matrix and the equivalent Modularityttice.
Here we explain the primitive terms of these modelsvant to
this work; for further details, see [11], [12].

Software systems are assumed to be hierarci8taictors,
the Modularity Matrix columns, are vectorial exmiens of
software structure, generalizing classes for argranchical
level. Functionals the Modularity Matrix rows, are vectorial
expressions of software behavior, generalizingtions which
are provided by structors. The standard Modulavitrix is
block-diagonal.Modules illustrated in Fig. 1, are sub-system
blocks along the Modularity Matrix diagonal, madestsuctor
and functional sub-sets, disjoint to other module-sets.

As shown by Exman and Katz [18], Modularity Matrix
design optimization neatly corresponds to Conceptuegrity
principles. Propriety justifies Linear Independemdestructors
among themselves and functionals among
Orthogonality implies the existence of modules.

The Modularity Lattice [14] is obtainable from the
Modularity Matrix, by well-known algorithms embodiein
software tools (e.g. Concept Explorer) building fdttice from

themselves.

KAgile-Design-Rules \

(Beck)

Cloncepfual '\> 15t Rule: Test Everything
ntegrity 5 o
(Brooks) V[| 27 Rule: Explicit Intent

Linear Software
Models
(Exman)

3+ Rule: No Duplication
4t Rule: Minimize Entities

5% Rule: Orthogonality

Figure 1. Software Theory explains Agile-Design-Rules -€ohceptual
Integrity” directly explains the first two rules and is anceptual basis for the
algebraic Linear Software Models These Models directly explain the three
other Agile-Design-Rules. This diagram motivates plaper organization.

Struitors
S1 | S2 | S3 | S4
Functionals —»{ F1 1
F2 1
F3 1 1
F4 0 1

a givenFormal Context This Context is a rectangular Boolean Figure 2. An Abstract Standard Modularity Matrix — It has 4rustors

matrix showing relations between a set of attrivated a set of
objects. The standard Modularity Matrix can be sasna
special case of Context: it is square, with refeticespectively
between structors and functionals. A fitting ModitlaLattice

is obtained (Fig. 2 corresponds to Fig. 1), in Wwhibe Top
node contains the set of all functionals and thé&dBo node
contains the set of all structors. Modularity Le#timodules
(see Exman and Speicher [14]) are the connecteg@oemts,

obtained by erasing the Top and Bottom nodes, which

represent the whole system, and not specific medule

The goal of Linear Software Models is to reachdtamdard
Modularity Matrix for a software system, where lalibcks are
orthogonal. An outlier matrix element coupling mta) not
orthogonal anymore, demands a system redesign.t®tee
Modularity Lattice to the Modularity Matrix equivaice, all
conclusions extracted from the Matrix are validtfoe Lattice.

Paper Organization

The remaining of the paper is organized as folld®extion
Il describes related work. Section Ill concerns thient of
Conceptual Software Design. The central sectiofotvhulates
the quantitative algebraic software theory of Adiesign-
Rules. Section V illustrates Design Tests with caselies.
Section VI concludes the paper with an overallais@on.

(matrix columns) and 4 Functionals (matrix rowshrde block-diagonal
modules are seen (in blue): two strictly diagor&l,(F1) and (S2, F2), and
one 2*2 block (S3, S4, F3, F4). Matrix elementssag the modules (in
white) have zero values (omitted for easier viaadion). F3, an example of
functional inheritance, is provided by both clasS8sand S4.

Bottom

Figure 3. Abstract Modularity Lattice diagram — Jhiattice exactly fits the
Modularity Matrix in Fig. 1. It has three modulgsio with just one-vertex

(S1, F1) and (S2, F2), and one with two vertice3, (4, F3, F4). Structor
labels are shown above and functional labels belmvvertices. A vertex
above another one, provides all the functionalswehe higher one: e.g. S4
provides both F4 and F3, as also seen in the matrikig. 1, while S3

provides only F3. Modules are the connected conmsneemaining after
cutting Top and Bottom nodes, as shown by the estheld lines.

II. RELATED WORK

A. Agile-Design-Rules for Sofware Design

Agile-Design-Rules were formulated by Kent Becktlie
first 1999 edition of his book Extreme Programming
Explained: Embrace Changd?2]. They were reformulated by
Beck himself [3] and by several authors in diffdrenles’
order and specific wording. Martin Fowler collabtech with
Kent Beck, writing together the
Programming” book [4], and later on wrote a blodited
Beck-Design-Rules [19] with his own version of fReles.

Corey Haines published a whole
“Understanding the 4 Rules of Simple Design” [2§ing the
Game of Life to illustrate the rules. Several othafiations of
the Agile-Design-Rules are due to Bekkers [5], Rbarger
[30] and Sironi [31], among others.

“Planning Extreme

Conceptual lattices, analyzed within Formal Concept
Analysis (FCA) were introduced in Wille [32]. An exview of
its mathematical foundations is given by Ganter \afilie [20].
The equivalence between Modularity Matrices andd@ptual
Lattices has been shown by Exman and Speicher yli#ith
justifies dealing with structors as concepts.

lll. CONCEPTUALSOFTWAREDESIGN REVEALING

INTENTION

We start here the systematic interpretation of Algie-
Design-Rules. By Fig.1 Conceptual Integrity dirgatkplains

book entitledthe first two rules.

A. A Separability Principle for Software

The first Agile-Design-Rule deserves special comsition.
To this end we need a Separability Principle forftvgare

Hunt and Thomas [22] in their book “The PragmaticEngineering. We have formulated such a principlé¢1i]. It

Programmer” mention the simple design rules, simgsm
Chapter 2 the relationship between Duplicatiofi (8le) and
Orthogonality: “The first warns not to duplicate dmedge
throughout your systems, the second not to spjitare piece
of knowledge across multiple system components”.

B. Applications of Conceptual Integrity

After Frederick Brooks’ proposal of Conceptual brigy
as a fundamental idea for software developmengarebers
tried to apply Conceptual Integrity in practice. Spige the
absence of formal quantitative criteria, these aunsth
interpreted the Conceptual Integrity principlesnays similar
to the Agile-Design-Rules, in particular rules 3lah

Kazman and Carriere [27] extracted a meaningfusoe
architecture usingonceptual integrity The guideline was a

states the following:

“Software Proper vs. Human Concerns Separability
Principle” — theories dealing with software proper are
separable from theories dealing with human conceshs
software engineering.

This Separability principle says that theories ihegivith
properties of the software system proper are inuggmat of
theories dealing with human stakeholder concerrithere
developer processes or end-user interactions witkldpers.

B. Relevance to Agile Software Development

The Separability Principle is relevant to the phlgsi
meaning of the % Agile-Design-Rule, which tells us to
continuously run all tests and make sure they ptils. This

small number of components connected in regularsway gepends on the particular interpretation of this.ru

minimizing numbers of entities (rule 4). Kazman][26
described a SAAMtool, in whichConceptual Integrityis
estimated by the number of primitive patterns efstem.

Clements et al. [9] interpretedonceptual integrityas
“similar things should be done in similar ways”, thvi
parsimonious data and control, i.e. duplicationidaoce and
minimization of entities (rules 3, 4). They suggestounting
entities as a way to quanti§onceptual Integrity

C. Algebraic Structures for Software Systems

In this work we focus on the Modularity Matrix [13pther
matrices have been used for modularity analysis. Jplacian
(von Luxburg [28]) has been used in various appbtos.
Exman and Sakhnini [17] derived a Laplacian matsiith
equivalent information to the Modularity Matrix, talning the
same modular design for a given software system.

The ‘Design Rules’ by Baldwin and Clark [1], despthe
name similarity to the Agile-Design-Rules, have aryw
different character. This approach is based upoDeaign
Structure Matrix (DSM), whose design quality isirestted by
an external economic theory superimposed on the DSMs
been mostly applied to non-software systems, asaltal some
software systems, e.g. Cai et al. [8]. A key défeze from the
Modularity Matrix is the lack of model linearity tfie DSM.

The first interpretation is trivial: a code with dgsiis not
runnable, and no next rule is applicable to codeliu
analysis. Successful tests are a pre-conditiothfonext rules.

Another interpretation directly touches pair-progming
characteristics of XP. Pair-programming works by gerson
writing the code while the other person of the paiites tests
to be run on the written code, and then they switch
programmer/tester roles. From this viewpoint this iconcerns
the human social aspects of development, and isetetant to
the software product proper.

In our view, the best interpretation touches thdivation
for testing. The importance of tests it not justfiading bugs,
but rather to enforce system redesign, in caseyagsioblems
were identified. In this view, testing is an inhargart of the
software product design and not an extraneous hwwocern.
But was this the truly original motivation behirdst rule?

C. 1% Agile-Design-Rule: Passing Design Tests

Whatever was the original motivation behind thestfir
Agile-Design-Rule, we propose here a novel intdgtien
consistent with our emphasis on Design instead of
implementation or development process.

The goal of the 3 Agile-Design-Rule is to pass systematic
“DesignTests, viz. to reveal design problems conflicting with

Conceptual Integrity. This new focus on design rsghat the
tests themselves should be carefully designed toobhsistent
with the SUD (System Under Design) Conceptual Iritgg
Design test examples will be given in section V.

D. 2" Agile-Design-Rule: Revealing Intention

The focus on design interpretation of the firsterigs a
suitable transition to the deep meaning of tHeAgjile-Design-
Rule. This rule in the formulation presented in tiiieoduction
of this paper (in sub-sectioly reads “Explicit Intent”, viz. to
explicitly express the ideas of the software authorother
words, the concepts embodied in the software desigts
should both reflect the main ideas of the softwsyrgtem and
be clearly understood by other stakeholders readhng
software. SummarizingConceptual Integrityis not only
essential to high-quality design, it should be ity revealed
in the software itself, and not just in its docutagion.

IV. THE ALGEBRAIC SOFTWARE THEORY ISQUANTITATIVE !

To be applicable to the practice of software systisign
an actual Software Theory should be quantitatigdt & clear
even in the naive formulation of the ruleso“duplicatiori and
“minimize entities In this section we provide formulas for
calculating the relevant quantities, to explairesu8 and 4 and
later on propose d'5ule.

A. A Quantitative Theory of Agile-Design-Rules

The quantitative algebraic Software Theory, theehin
Software Models, which in turn is based upon Cohgdp
Integrity (see Fig. 1), obeys the following demands

Software represented by a mathematical
structure— be it a matrix or a lattice; in this paper
we chose the matrix representation;

Quantities in formulas amenable to calculation

getting precise numbers for each obtained design;

Standard Criteria for design quality- allowing
comparison of proposed designs with standards;

Quantities involved in the Conceptual Integrityctadtions
are normalized. These quantities are independenthef
vector/matrix sizes, by dividing results by releivantity sizes.

B.

“No duplication” in terms of vectors, is the simpilease of
linear independence: any set of identical strucioesobviously
linearly dependent and all but one should be eliteid. The
same is true for identical functionals. Thus, tH& Agile-
Design-Rule is a particular case of tierdle discussed next.

C.

39 Agile-Design-Rule: No Duplication

4™ Agile-Design-Rule: Minimize Entities i.e.
Propriety

Following Exman and Katz [18], the naive “Minimize
Entities” rule corresponds to the generic lineatejpendence
Propriety principle of Conceptual Integrity. Linear
independence within a module is evaluated by egudt), in
which r is the rank and is the number of columns of the
module sub-matrix. Since module sub-matrices anargg one

could use as well the number of rows instead oftlmaber of
columns. The module propriety criterion in equat{@h has a
value between zero and the maximum propriety vafid

obtained whem equalsc.

Propriety =1-((c-ry c) (1)

D. Orthogonality

As already mentioned, Hunt and Thomas [22] linked i
their book the “No duplication” rule with Orthogditg. The
latter quantity is calculated as follows. Assumepair of
normalized vectors andv i.e. all their elements are divided by
the length of the respective vector. Their Orthadity is
calculated by equation (2), whefe-V) is the vectors’ scalar

product. Orthogonality has a value between zero ted
maximal value 1 obtained for zero scalar product.

2)

Software system calculations, using the above amnst
should be done for the whole set of Modularity NMatnodules
to obtain the combined system conceptual integrity.

Orthogonality =1- (v V)

V. DESIGNTESTSILLUSTRATED BY CASE STUDIES

The Agile-Design-Rules are here illustrated by Case
Studies. They are numbered and presented accotdirige
rational interpretation given by the algebraic ®afte Theory,
and adding a fifth Orthogonality rule.

A. 1% Agile-Design-Rule: Design Tests — ATM
Conceptual Integrity Case Study

Design Testare distinct from Unit Tests whose purpose is
to find syntactic or logical errors. A design tesfy check the
Conceptual Integrity of a sub-system. For instarmme ATM
(Automatic Teller Machine) is a reasonable machingeposit
or withdraw cash or deposit checks. But it is natrently an
acceptable way to obtain a house mortgage.

Thus, a design test to verify an ATM design for Ceptual
Integrity is a loop on a Financial Ontology, loogifior and
flagging for deletion all concepts appearing in tAgM
design that are related or sub-types of the moetgagcept.

B. 2" Agile-Design-Rule: Revealing Intention —

Interdisciplinary Ambiguity Case Study

Revealing Intention is again a matter of Concepedign
verification. Trivial cases are to demand naminglaéses and
functions by meaningful names such as “Bridge” lagtid”,
instead of meaningless names such as “X” or “Y'e(geg.
[29]), or even worse, misleading names.

Less trivial cases deal with ambiguity, for instarin an
interdisciplinary software in which the same teras llifferent
meanings in two disciplines. An example is the esafjthe
“Bridge” software design pattern within an applioat for

civil engineering dealing with tunnels and “bridgeanother
example is the usage of “Liquid” financial assetishim an
application about “Liquid” chemicals.

In order to verify ambiguity absence one may bk
SUD (Software Under Development) Application Onipip
from the domain ontologies intersection, and chetlether
the same term appears in different Application Qup
branches dealing with the different disciplines.

C. 39 Agile-Design-Rule: No duplication —
Circle Functionals Case Study

As already stated above, “No duplication” is a igatar
simple case of Linear Dependence. Whenever therénar or
more identical functionals (similarly for identicatructors),
one should eliminate all of them except one.

For instance, assume a geometrical applicationlimg
circles. The Modularity Matrix has a “circle” stitoc. Suppose
it also has two functionals — calculateea by [T*Radius and
calculate perimeter by 2*1*Radius. Then there are two
identical rows in the matrix, in which there arevdlued
elements for these two rows in the same circlecgiru
column. One should eliminate duplication, sincehbtitese
functions depend only on the Radius variable; wbea fixes
either the Area or the Perimeter, the Radius isrdehed and
also the value of the other function. These fumetis are
trivially dependent.

D. 4™ Agile-Design-Rule: Minimize Number of
Entities — General Propriety Case Study

The Propriety principle of Conceptual Integrity exffively
minimizes the numbers of structors and respectivetfonals
in a Modularity Matrix representation of a softwasgstem.
Whenever there are linear dependences of row ainuol
vectors within the matrix, one must eliminate soveetors to
obtain total linear independence in the matrix.sTikichecked
by equation (1), in which the matrix rank r shobk equal to
the number of structors (columns), or equivaletttly number
of rows (functionals). If Propriety is less thaby.equation (1),
some vectors must be eliminated by the softwardnerg
using semantic considerations.

For instance, in elementary trigopnometry therevamgous
cases of mutually dependent functions, in which needs a
lesser number of independent functions. To caleulge
values of sine, co-sine and tangent fuctions ofamgle in
radians, one needs at most two of these functions.

E. 5" Agile-Design-Rule: Orthogonality —
Redesign to Eliminate Coupling Case Study
The Software Theory leads us to add a fifth AgiksQn-
Rule in our formulation to comply with the Orthogdity
principle of Conceptual Integrity, which is obeydy the
standard Modularity Matrix. It means that all stars and
functionals of a given module should be
orthogonal to all structors and functionals of@her modules

respeqtivel

in the software system represented by the Modwyl&ditrix.
Orthogonality is calculated by repeated applicabbequation
(2). If the overall matrix orthogonality is not With some
sparse modules, there is a case of coupling anddftevare
system must be redesigned by the software engiteer
eliminate coupling and assure orthogonality.

For instance, in a sub-system whose purpose iseggod
applications, a module performing proper geodetic
calculations should be orthogonal to a module doimg
generic algebraic functions needed for e.g. matrix
computations that may be needed within the geodetic
calculations. Any redefinition of a generic algabrfunction
within a proper geodetic class, causes couplinfp@fyeodetic
and the algebraic modules, in need of redesign.

VI. DISCUSSION
A. Agile-Design-Rules: Plausibility of the
Conceptual and Algebraic Software Theory

Our analysis in this work of the four original AgfiDesign-
Rules in the formulation by Jeffries, as displajedub-section
A of the Introduction to this paper, shows the feileg picture:

e For consistency of the1rule on running tests
with the other rules, we proposed a novel
interpretation in which tests should be essentially
Design Testsinstead of just debugging unit tests;

e The 2% rule says that Conceptual Integrity besides
being a general demand, it must be explicitly
expressed in the names of the entities, such as
classes and functions;

e The 3% and 4 rules are completely explained by
the Propriety principle which is part of the
Conceptual Integrity approach; quantitatively it
corresponds to the demand of Linear
Independence among structors and among
functionals in the Modularity Matrix;

Overall, the explanations for the Agile-Design-Rule
reinforce the plausibility of the algebraic Line&oftware
Models, based upon Conceptual Integrity, as a Soéw
Theory of software composition.

B. Rules Variability: Selectivity, Numbers and
Order

Any theory proposed to explain and justify methodjatal
rules of development, must be a self-consistenbrtheA
possible outcome is that justification must be cele, i.e. not
all practical rules are derivable from the Softwakeory and
the theory may generate additional practical rules.

In the particular case of the Agile-Design-Rulés, £'rule,
on running tests, has a novel interpretation irepotd comply
with the Software Theory self-consistency. Furthamema new
reasonable % rule of Orthogonality has been explicitly
generated, as suggested by Hunt and Thomas [22].

The particular order of the rules seems less imapgrtas
long as they rigorously follow from the Softwareebiny. The

rule order is C‘oerhaps of interest for rule clasatfon, in which

the ' and 2

and the % and &' rules belong to an algebraic viewpoint.

C. Future Work

In order to solidify the explanation and justificet for the

Agile-Design-Rules one needs to analyze softwarsgtesy
examples of a variety of sizes.

Another open issue is the applicability of thesesionilar

rules to other development methodologies.

While linear independence is relevant to Modularity[16]

Lattices, their orthogonality deserves further stigation.

D. Main Contribution

There are three main contributions of this papét. itl

argues that Linear Software Models, the algebraittwaire
Theory based upon Conceptual Integrity, is a rigsfoasis for
software design methodologies!®?2it shows that the Agile-
Design-Rules essence is selectively explained astified by

the Software Theory."3 it proposed the idea of systematic

Design Tests.

ACKNOWLEDGMENT

The author thanks Reuven Yagel for his useful ssiigyes

which contributed to improve the paper.

(1]
(2]
(3]
[4]
(5]
(6]

(71
(8]

[9]

(10]

REFERENCES

C.Y. Baldwin and K.B. ClarkDesign RulesVol. I. The Power of
Modularity, MIT Press, Cambridge, MA, USA, 2000.

K. Beck, Extreme Programming Explained: Embrace Changg
edition, Addison-Wesley, Boston, MA, USA, 1999.

K. Beck, “Embracing Change with Extreme ProgrammintEEE
Computer, Vol. 32, pp. 70-77, October 1999. DIW:1109/2.796139

K. Beck and M. FowlerPlanning Extreme ProgrammingAddison
Wesley, Boston, MA, USA, 2000.

N. Bekkers, “4 Rules of Simple Design”,
https://www.theguild.nl/4-rules-of-simple-design/

F.P. Brooks, The Mythical Man-Month — Essays
Engineering — Anniversary Edition, Addison-Wesley, Boston, MA,
USA, 1995.

F.P. Brooks,The Design of Design: Essays from a Computer Ssient
Addison-Wesley, Boston, MA, USA, 2010.

Y. Cai and K.J. Sullivan, “Modularity Analysis ofolical Design
Models”, in Proc. 2F' IEEE/ACM Int. Conf. Automated Software Eng.
ASE’'06 pp. 91-102, Tokyo, Japan, 2006.

P. Clements, R. Kazman and M. KleirEvaluating Software

Architecture: Methods and Case Studiaddison-Wesley, Boston, MA,
USA, 2001.

S.P. De Rosso and D. Jackson, “What's Wrong witf? @i Conceptual

Design Analysis”, in Proc. of Onward! Conference, B7-51, ACM,
2013. DOLlhttp://dx.doi.org/10.1145/2509578.2509584

2016. Web:

[11] I. Exman, “Linear Software Models”, video pemtation of paper at

[12]

GTSE 2012, KTH, Stockholm, Sweden,
http://www.youtube.com/watch?v=E JfzArH8-Is.

I. Exman, “Linear Software Models: Standard ModityaHighlights
Residual Coupling”, Int. Journal of Software Engrieg and
Knowledge Engineering, Vol. 24, pp. 183-210, 20180I:
10.1142/S0218194014500089

[13] I
rules strictly belong to a Conceptual viewpoint

in Software 2

2012b. Web site:

Exman, “Linear Software Models: Decoupled Modulérom
Modularity Matrix Eigenvectors”, Int. Journal of fB@are Engineering
and Knowledge Engineering, Vol. 25, pp. 1395-142615. DOI:
http://dx.doi.org/10.1142/S0218194015500308

I. Exman and D. Speicher, “Linear Software Modglguivalence of the
Modularity Matrix to its Modularity Lattice”, in Rc. 10" ICSOFT'2015
Int. Conference on Software Technology, pp. 109-1%6itePress,
Portugal, 2015. DOIL0.5220/0005557701090116

I. Exman, “Linear Software Models: An Algebraic Tng of Software
Composition”, in Proc. 28 Int. Conf. on Software Engineering and
Knowledge Engineering, Keynote Abstract, KSI ReseaRedwood
City, CA, USA, 2016.

I. Exman, D.E. Perry, B. Barn and P. Ralph, “Sep#itg Principles for
a General Theory of Software Engineering: ReportrehGTSE 2015
Workshop”, ACM SIGSOFT Software Engineering Notds(4): 25-27
(2016). DOI =10.1145/2853073.2853093

I. Exman and R. Sakhnini, “Linear Software ModeModularity
Analysis by the Laplacian Matrix”, in Proc. UICSOFT'2016 Int.
Conference on Software Technology, Volume 2, pp.0-108,
ScitePress, Portugal, 2016. DQ@0.5220/0005985601000108

I. Exman and P. Katz, “Conceptual Software Desfggebraic Axioms
for Conceptual Integrity”, in Proc. 291Int. Conf. on Software
Engineering and Knowledge Engineering, pp. 155-18&I| Research,
Pittsburgh, PA, USA, 2017. DOhttps://doi.org/10.18293/SEKE2017-
148

M. Fowler, “Beck Design Rules”, Blog, March 2015, RU
https://martinfowler.com/bliki/BeckDesignRules.html

B. Ganter and R. Willefformal Concept Analysis: Mathematical
Foundations Springer-Verlag, Berlin, Germany, 1998.

C. Haines, “Understanding the Four Rules of Sinipdsign”, Leanpub,
2014.

A. Hunt and D. Thomas,The Pragmatic Programmer: From
Journeyman to MasteAddison-Wesley, Boston, MA, USA, 1999.

D. Jackson, “Conceptual Design of Software: A Redeadgenda’,
CSAIL Technical Report, MIT-CSAIL-TR-2013-020, 2Q13JRL:
http://dspace.mit.edu/bitstream/handle/1721.1/788P6-CSAIL-TR-
2013-020.pdf?sequence=2

D. Jackson, “Towards a Theory of Conceptual DefigrSoftware”, in

Proc. Onward! 2015 ACM Int. Symposium on New Ided&w

Paradigms and Reflections on Programming and Sodtvpp. 282-296,
2015. DOI:10.1145/2814228.2814248

R. Jeffries, “Essential XP: Emergent Design”, Oetol2001. URL:
https://ronjeffries.com/xprog/classics/expemergesiah/.

R. Kazman, “Tool Support for Architecture Analysiad Design”, in
ISAW’'96 Proc. 2¢ Int. Software Architecture Workshop, pp. 94-97,
ACM, New York, NY, USA, 1996. DOI10.1145/243327.243618

R. Kazman and S.J. Carriere, “Playing Detective:cdRetructing
Software Architecture from Available Evidence.” Teaal Report
CMU/SEI-97-TR-010, Software Engineering Institu@grnegie Mellon
University, Pittsburgh, PA, USA, 1997.

U. von Luxburg, “A Tutorial on Spectral ClusteringStatistics and
Computing 17 (4), pp. 395-416, 2007. DQUO.1007/s11222-007-9033-
z

[29] K. Owen, “What's in a Name? Anti-Patterns to a HRrdblem”, 2016.

Web: https://www.sitepoint.com/whats-in-a-name-anti-pats-to-a-
hard-problem/

J.B. Rainsberger, “The Four Elements of Simple @#si2016. Web:
http://blog.jbrains.ca/permalink/the-four-elemeafssimple-design

G. Sironi, “The 4 rules of simple design”, 2011. We
https://dzone.com/articles/4-rules-simple-design

R. Wille, “Restructuring lattice theory: an apprbasased on hierarchies
of concepts” In: I. Rival (ed.)Ordered Setspp. 445-470, Reidel,
Dordrecht-Boston, 1982.

