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Abstract—Software practices often evolved sets of efficient 
software design rules embodying together a kind of methodology. 
However, methodologies per se are no substitute for a rigorous 
software theory. Methodologies can live side by side with a 
software theory which explains and justifies the widely accepted 
wisdom of the field. This paper shows that Linear Software 
Models, an algebraic Software Theory together with its basis, the 
Conceptual Integrity principles, indeed explain the deeper 
contents of the so-called “four rules of simple design”, which we 
concisely name as Agile-Design-Rules.  These rules are a succinct 
expression of agile design methodologies that emerged from 
Extreme Programming (XP). Thus one obtains the best benefits 
from Software Theory and methodology co-existence: 1st, the 
explained rules reinforce the Software Theory plausibility; 2 nd, 
the Software Theory selectively clarifies roles of the Agile-Design-
Rules enabling quantitative calculations for their application in 
practice; 3rd, co-existence leads to the idea of Design Tests as 
illustrated by case studies. 1 
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I.  INTRODUCTION 

A well-known set of rules for software system design is the 
so-called “four rules of simple design” which we concisely 
name as Agile-Design-Rules. These rules were first formulated 
by Kent Beck (see page 57 in [2]) at the end of the previous 
century, within the context of Extreme Programming (see e.g. 
[3]), commonly abbreviated as XP.  This well-known kind of 
agile design methodology had a significant influence on 
approaches to practical software system development.   

Some outstanding XP development characteristics [3] are: 

• Simple Design – expressed, e.g. by the Agile-
Design-Rules; 

• Tests – software development is driven by tests 
written and run in parallel to the software itself. 

• Pair Programming – production code is often 
written by two people at one 
screen/keyboard/mouse. 
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We claim, that however successful in practice, any 
development methodology such as XP is no substitute for a 
rigorous Software Theory. On the other hand, a theory totally 
disconnected from practical directives in a field eminently 
application-oriented such as Software Engineering is of no use.   

This paper has two-way goals: a- to argue that the algebraic 
Software Theory is a rigorous basis for applicable software 
design methodologies; b- to show that the Agile-Design-Rules 
essence is selectively explained and justified by the referred 
Software Theory. We introduce the Agile-Design-Rules, the 
basics of Conceptual Software design, and the algebraic Linear 
Software Models. 

A. Agile-Design-Rules for Software 
Development 

There are several formulations of the Agile-Design-Rules, 
differing by the wording of each rule and the rules’ order. The 
rules’ essence is common to all formulations. Here, we choose 
a formulation by Ron Jeffries [25], reordering rules 2 and 3: 

 
1. Test Everything – All the tests for the SUD 

(Software Under Development) are passing; 
2. Explicit Intent – Express the ideas the software’s 

author wants to express; 
3. Eliminate Duplication – Contain no duplicate code; 
4. Minimize Entities – Minimize classes and methods. 

 
The selective interpretation of these rules will be given 

later on in this paper, after the theory basics are explained. 

B. Conceptual Integrity 

Conceptual Integrity is a deep software design idea 
proposed by Frederick Brooks [6], [7], much earlier than the 
Agile-Design-Rules. Historically, the earlier ideas were not 
recognized as the basis for the practical rules. 

Three principles suggested by Brooks [6] were verbally, not 
formally, explained by Jackson et al. [10], [23], [24]. We focus 
on the two most relevant to clarify Agile-Design-Rules: 

1. Orthogonality – individual functions should be 
independent of one another; 

2. Propriety – a product should have just the 
functions essential to its purpose and no more; 



The Conceptual Integrity principles can be expressed in 
terms of modularity and design simplicity. Orthogonality is a 
basic modularity mechanism. Propriety is an optimization: the 
fewer the functions performing exactly the same tasks, the 
simpler the software product. One immediately perceives their 
relevance to the Agile-Design-Rules. Full interpretation will 
follow from the theory, presented next.  

C. Linear Software Models: the Modularity 
Matrix and the Modularity Lattice 

We concisely characterize two Linear Software Models’ 
algebraic structures, representing a software system. These are 
the Modularity Matrix and the equivalent Modularity Lattice. 
Here we explain the primitive terms of these models relevant to 
this work; for further details, see [11], [12].  

Software systems are assumed to be hierarchical. Structors, 
the Modularity Matrix columns, are vectorial expressions of 
software structure, generalizing classes for any hierarchical 
level. Functionals, the Modularity Matrix rows, are vectorial 
expressions of software behavior, generalizing functions which 
are provided by structors. The standard Modularity Matrix is 
block-diagonal. Modules, illustrated in Fig. 1, are sub-system 
blocks along the Modularity Matrix diagonal, made of structor 
and functional sub-sets, disjoint to other module sub-sets. 

As shown by Exman and Katz [18], Modularity Matrix 
design optimization neatly corresponds to Conceptual Integrity 
principles. Propriety justifies Linear Independence of structors 
among themselves and functionals among themselves. 
Orthogonality implies the existence of modules.  

The Modularity Lattice [14] is obtainable from the 
Modularity Matrix, by well-known algorithms embodied in 
software tools (e.g. Concept Explorer) building the lattice from 
a given Formal Context. This Context is a rectangular Boolean 
matrix showing relations between a set of attributes and a set of 
objects. The standard Modularity Matrix can be seen as a 
special case of Context: it is square, with relations respectively 
between structors and functionals. A fitting Modularity Lattice 
is obtained (Fig. 2 corresponds to Fig. 1), in which the Top 
node contains the set of all functionals and the Bottom node 
contains the set of all structors. Modularity Lattice modules 
(see Exman and Speicher [14]) are the connected components, 
obtained by erasing the Top and Bottom nodes, which 
represent the whole system, and not specific modules.  

The goal of Linear Software Models is to reach the standard 
Modularity Matrix for a software system, where all blocks are 
orthogonal. An outlier matrix element coupling modules, not 
orthogonal anymore, demands a system redesign. Due to the 
Modularity Lattice to the Modularity Matrix equivalence, all 
conclusions extracted from the Matrix are valid for the Lattice. 

Paper Organization 

The remaining of the paper is organized as follows. Section 
II describes related work. Section III concerns the intent of 
Conceptual Software Design. The central section IV formulates 
the quantitative algebraic software theory of Agile-Design-
Rules. Section V illustrates Design Tests with case studies. 
Section VI concludes the paper with an overall discussion. 

 

Figure 1.  Software Theory explains Agile-Design-Rules – “Conceptual 
Integrity” directly explains the first two rules and is a conceptual basis for the 
algebraic “Linear Software Models”. These Models directly explain the three 
other Agile-Design-Rules. This diagram motivates the paper organization. 

 

Figure 2.  An Abstract Standard Modularity Matrix – It has 4 Structors 
(matrix columns) and 4 Functionals (matrix rows). Three block-diagonal 
modules are seen (in blue): two strictly diagonal (S1, F1) and (S2, F2), and 
one 2*2 block (S3, S4, F3, F4). Matrix elements outside the modules (in 
white) have zero values (omitted for easier visualization). F3, an example of 
functional inheritance, is provided by both classes S3 and S4. 

 

Figure 3. Abstract Modularity Lattice diagram – This Lattice exactly fits the 
Modularity Matrix in Fig. 1. It has three modules: two with just one-vertex 
(S1, F1) and (S2, F2), and one with two vertices (S3, S4, F3, F4). Structor 
labels are shown above and functional labels below the vertices. A vertex 
above another one, provides all the functionals below the higher one: e.g. S4 
provides both F4 and F3, as also seen in the matrix in Fig. 1, while S3 
provides only F3. Modules are the connected conponents remaining after 
cutting Top and Bottom nodes, as shown by the red dashed lines. 



II. RELATED WORK 

A. Agile-Design-Rules for Sofware Design 

Agile-Design-Rules were formulated by Kent Beck, in the 
first 1999 edition of his book “Extreme Programming 
Explained: Embrace Change” [2]. They were reformulated by 
Beck himself [3] and by several authors in different rules’ 
order and specific wording. Martin Fowler collaborated with 
Kent Beck, writing together the “Planning Extreme 
Programming” book [4], and later on wrote a blog entitled 
Beck-Design-Rules [19] with his own version of the Rules. 

Corey Haines published a whole book entitled 
“Understanding the 4 Rules of Simple Design” [21] using the 
Game of Life to illustrate the rules. Several other variations of 
the Agile-Design-Rules are due to Bekkers [5], Rainsberger 
[30] and Sironi [31], among others. 

Hunt and Thomas [22] in their book “The Pragmatic 
Programmer” mention the simple design rules, stressing in 
Chapter 2 the relationship between Duplication (3rd rule) and 
Orthogonality: “The first warns not to duplicate knowledge 
throughout your systems, the second not to split any one piece 
of knowledge across multiple system components”. 

B. Applications of Conceptual Integrity 

After Frederick Brooks’ proposal of Conceptual Integrity 
as a fundamental idea for software development, researchers 
tried to apply Conceptual Integrity in practice. Despite the 
absence of formal quantitative criteria, these authors 
interpreted the Conceptual Integrity principles in ways similar 
to the Agile-Design-Rules, in particular rules 3 and 4.  

Kazman and Carriere [27] extracted a meaningful software 
architecture using conceptual integrity. The guideline was a 
small number of components connected in regular ways, 
minimizing numbers of entities (rule 4). Kazman [26] 
described a SAAMtool, in which Conceptual Integrity is 
estimated by the number of primitive patterns of a system. 

Clements et al. [9] interpreted conceptual integrity as 
“similar things should be done in similar ways”, with 
parsimonious data and control, i.e. duplication avoidance and 
minimization of entities (rules 3, 4). They suggested counting 
entities as a way to quantify Conceptual Integrity. 

C. Algebraic Structures for Software Systems 

In this work we focus on the Modularity Matrix [13]. Other 
matrices have been used for modularity analysis. The Laplacian 
(von Luxburg [28]) has been used in various applications. 
Exman and Sakhnini [17] derived a Laplacian matrix with 
equivalent information to the Modularity Matrix, obtaining the 
same modular design for a given software system.  

The ‘Design Rules’ by Baldwin and Clark [1], despite the 
name similarity to the Agile-Design-Rules, have a very 
different character. This approach is based upon a Design 
Structure Matrix (DSM), whose design quality is estimated by 
an external economic theory superimposed on the DSM. It has 
been mostly applied to non-software systems, and also to some 
software systems, e.g. Cai et al. [8]. A key difference from the 
Modularity Matrix is the lack of model linearity of the DSM. 

Conceptual lattices, analyzed within Formal Concept 
Analysis (FCA) were introduced in Wille [32]. An overview of 
its mathematical foundations is given by Ganter and Wille [20]. 
The equivalence between Modularity Matrices and Conceptual 
Lattices has been shown by Exman and Speicher [14], which 
justifies dealing with structors as concepts. 

III.  CONCEPTUAL SOFTWARE DESIGN: REVEALING 

INTENTION 

We start here the systematic interpretation of the Agile-
Design-Rules. By Fig.1 Conceptual Integrity directly explains 
the first two rules. 

A. A Separability Principle for Software 

The first Agile-Design-Rule deserves special consideration. 
To this end we need a Separability Principle for Software 
Engineering. We have formulated such a principle in [16]. It 
states the following: 

 “Software Proper vs. Human Concerns Separability 
Principle”  – theories dealing with software proper are 
separable from theories dealing with human concerns of 
software engineering. 

This Separability principle says that theories dealing with 
properties of the software system proper are independent of 
theories dealing with human stakeholder concerns, either 
developer processes or end-user interactions with developers. 

B. Relevance to Agile Software Development 

The Separability Principle is relevant to the possible 
meaning of the 1st Agile-Design-Rule, which tells us to 
continuously run all tests and make sure they still pass. This 
depends on the particular interpretation of this rule. 

The first interpretation is trivial: a code with bugs is not 
runnable, and no next rule is applicable to code quality 
analysis. Successful tests are a pre-condition for the next rules.  

Another interpretation directly touches pair-programming 
characteristics of XP. Pair-programming works by one person 
writing the code while the other person of the pair writes tests 
to be run on the written code, and then they switch the 
programmer/tester roles. From this viewpoint this rule concerns 
the human social aspects of development, and is not relevant to 
the software product proper.  

In our view, the best interpretation touches the motivation 
for testing. The importance of tests it not just for finding bugs, 
but rather to enforce system redesign, in case design problems 
were identified. In this view, testing is an inherent part of the 
software product design and not an extraneous human concern. 
But was this the truly original motivation behind this rule? 

C. 1st Agile-Design-Rule: Passing Design Tests 

Whatever was the original motivation behind the first 
Agile-Design-Rule, we propose here a novel interpretation 
consistent with our emphasis on Design instead of 
implementation or development process. 

The goal of the 1st Agile-Design-Rule is to pass systematic 
“Design Tests”, viz. to reveal design problems conflicting with 



Conceptual Integrity. This new focus on design means that the 
tests themselves should be carefully designed to be consistent 
with the SUD (System Under Design) Conceptual Integrity. 
Design test examples will be given in section V. 

D. 2nd  Agile-Design-Rule: Revealing Intention 

The focus on design interpretation of the first rule is a 
suitable transition to the deep meaning of the 2nd Agile-Design-
Rule. This rule in the formulation presented in the Introduction 
of this paper (in sub-section A) reads “Explicit Intent”, viz. to 
explicitly express the ideas of the software author. In other 
words, the concepts embodied in the software design units 
should both reflect the main ideas of the software system and 
be clearly understood by other stakeholders reading the 
software. Summarizing, Conceptual Integrity is not only 
essential to high-quality design, it should be explicitly revealed 
in the software itself, and not just in its documentation. 

IV. THE ALGEBRAIC SOFTWARE THEORY IS QUANTITATIVE ! 

To be applicable to the practice of software system design 
an actual Software Theory should be quantitative, as it is clear 
even in the naïve formulation of the rules: “no duplication” and 
“minimize entities”. In this section we provide formulas for 
calculating the relevant quantities, to explain rules 3 and 4 and 
later on propose a 5th rule. 

A. A Quantitative Theory of Agile-Design-Rules 

The quantitative algebraic Software Theory, the Linear 
Software Models, which in turn is based upon Conceptual 
Integrity (see Fig. 1), obeys the following demands: 

• Software represented by a mathematical 
structure – be it a matrix or a lattice; in this paper 
we chose the matrix representation; 

• Quantities in formulas amenable to calculation – 
getting precise numbers for each obtained design; 

• Standard Criteria for design quality – allowing 
comparison of proposed designs with standards; 

Quantities involved in the Conceptual Integrity calculations 
are normalized. These quantities are independent of the 
vector/matrix sizes, by dividing results by relevant entity sizes. 

B.  3rd  Agile-Design-Rule: No Duplication  

“No duplication” in terms of vectors, is the simplest case of 
linear independence: any set of identical structors are obviously 
linearly dependent and all but one should be eliminated. The 
same is true for identical functionals. Thus, the 3rd Agile-
Design-Rule is a particular case of the 4th rule discussed next. 

C. 4th  Agile-Design-Rule: Minimize Entities i.e. 
Propriety 

Following Exman and Katz [18], the naïve “Minimize 
Entities” rule corresponds to the generic linear independence 
Propriety principle of Conceptual Integrity. Linear 
independence within a module is evaluated by equation (1), in 
which r  is the rank and c is the number of columns of the 
module sub-matrix. Since module sub-matrices are square, one 

could use as well the number of rows instead of the number of 
columns. The module propriety criterion in equation (1) has a 
value between zero and the maximum propriety value of 1 
obtained when r  equals c. 

Propriety = 1 - ( (c - r) c )  (1) 

D. Orthogonality 

 
As already mentioned, Hunt and Thomas [22] linked in 

their book the “No duplication” rule with Orthogonality. The 
latter quantity is calculated as follows. Assume a pair of 
normalized vectors u and v i.e. all their elements are divided by 
the length of the respective vector. Their Orthogonality is 
calculated by equation (2), where ( )u vi is the vectors’ scalar 

product. Orthogonality has a value between zero and the 
maximal value 1 obtained for zero scalar product. 

)iOrthogonality = 1 - (u v   (2) 

Software system calculations, using the above equations, 
should be done for the whole set of Modularity Matrix modules 
to obtain the combined system conceptual integrity.  

V. DESIGN TESTS ILLUSTRATED BY CASE STUDIES 

 
The Agile-Design-Rules are here illustrated by Case 

Studies. They are numbered and presented according to the 
rational interpretation given by the algebraic Software Theory, 
and adding a fifth Orthogonality rule. 

A. 1st  Agile-Design-Rule: Design Tests – ATM 
Conceptual Integrity Case Study 

Design Tests are distinct from Unit Tests whose purpose is 
to find syntactic or logical errors. A design test, may check the 
Conceptual Integrity of a sub-system. For instance, an ATM 
(Automatic Teller Machine) is a reasonable machine to deposit 
or withdraw cash or deposit checks. But it is not currently an 
acceptable way to obtain a house mortgage.  

Thus, a design test to verify an ATM design for Conceptual 
Integrity is a loop on a Financial Ontology, looking for and 
flagging for deletion all concepts appearing in the ATM 
design that are related or sub-types of the mortgage concept. 

B. 2nd Agile-Design-Rule: Revealing Intention – 
Interdisciplinary Ambiguity Case Study 

Revealing Intention is again a matter of Conceptual Design 
verification. Trivial cases are to demand naming of classes and 
functions by meaningful names such as “Bridge” or “Liquid”, 
instead of meaningless names such as “X” or “Y” (see e.g.  
[29]), or even worse, misleading names. 

Less trivial cases deal with ambiguity, for instance in an 
interdisciplinary software in which the same term has different 
meanings in two disciplines. An example is the usage of the 
“Bridge” software design pattern within an application for 



civil engineering dealing with tunnels and “bridges”. Another 
example is the usage of “Liquid” financial assets within an 
application about “Liquid” chemicals. 

In order to verify ambiguity absence one may build an 
SUD (Software Under Development) Application Ontology, 
from the domain ontologies intersection, and check whether 
the same term appears in different Application Ontology 
branches dealing with the different disciplines. 

C. 3rd  Agile-Design-Rule: No duplication – 
Circle Functionals Case Study 

As already stated above, “No duplication” is a particular 
simple case of Linear Dependence. Whenever there are two or 
more identical functionals (similarly for identical structors), 
one should eliminate all of them except one. 

For instance, assume a geometrical application involving 
circles. The Modularity Matrix has a “circle” structor. Suppose 
it also has two functionals – calculate area by Π*Radius2 and 
calculate perimeter by 2*Π*Radius. Then there are two 
identical rows in the matrix, in which there are 1-valued 
elements for these two rows in the same circle structor 
column. One should eliminate duplication, since both these 
functions depend only on the Radius variable; when one fixes 
either the Area or the Perimeter, the Radius is determined and 
also the value of the other function. These functionals are 
trivially dependent. 

D. 4th  Agile-Design-Rule: Minimize Number of 
Entities – General Propriety Case Study 

The Propriety principle of Conceptual Integrity effectively 
minimizes the numbers of structors and respective functionals 
in a Modularity Matrix representation of a software system. 
Whenever there are linear dependences of row or column 
vectors within the matrix, one must eliminate some vectors to 
obtain total linear independence in the matrix. This is checked 
by equation (1), in which the matrix rank r should be equal to 
the number of structors (columns), or equivalently the number 
of rows (functionals). If Propriety is less than 1 by equation (1), 
some vectors must be eliminated by the software engineer, 
using semantic considerations. 

For instance, in elementary trigonometry there are various 
cases of mutually dependent functions, in which one needs a 
lesser number of independent functions. To calculate the 
values of sine, co-sine and tangent fuctions of an angle in 
radians, one needs at most two of these functions. 

E. 5th Agile-Design-Rule: Orthogonality – 
Redesign to Eliminate Coupling Case Study 

The Software Theory leads us to add a fifth Agile-Design-
Rule in our formulation to comply with the Orthogonality 
principle of Conceptual Integrity, which is obeyed by the 
standard Modularity Matrix. It means that all structors and 
functionals of a given module should be respectively 
orthogonal to all structors and functionals of all other modules 

in the software system represented by the Modularity Matrix. 
Orthogonality is calculated by repeated application of equation 
(2). If the overall matrix orthogonality is not 1, with some 
sparse modules, there is a case of coupling and the software 
system must be redesigned by the software engineer to 
eliminate coupling and assure orthogonality. 

For instance, in a sub-system whose purpose is geodesy 
applications, a module performing proper geodetic 
calculations should be orthogonal to a module containing 
generic algebraic functions needed for e.g. matrix 
computations that may be needed within the geodetic 
calculations. Any redefinition of a generic algebraic function 
within a proper geodetic class, causes coupling of the geodetic 
and the algebraic modules, in need of redesign. 

VI.  DISCUSSION 

A. Agile-Design-Rules: Plausibility of the 
Conceptual and Algebraic Software Theory 

Our analysis in this work of the four original Agile-Design-
Rules in the formulation by Jeffries, as displayed in sub-section 
A of the Introduction to this paper, shows the following picture: 

• For consistency of the 1st rule on running tests 
with the other rules, we proposed a novel 
interpretation in which tests should be essentially 
Design Tests, instead of just debugging unit tests; 

• The 2nd rule says that Conceptual Integrity besides 
being a general demand, it must be explicitly 
expressed in the names of the entities, such as 
classes and functions; 

• The 3rd and 4th rules are completely explained by 
the Propriety principle which is part of the 
Conceptual Integrity approach; quantitatively it 
corresponds to the demand of Linear 
Independence among structors and among 
functionals  in the Modularity Matrix; 

Overall, the explanations for the Agile-Design-Rules 
reinforce the plausibility of the algebraic Linear Software 
Models, based upon Conceptual Integrity, as a Software 
Theory of software composition. 

B. Rules Variability: Selectivity, Numbers  and 
Order 

Any theory proposed to explain and justify methodological 
rules of development, must be a self-consistent theory. A 
possible outcome is that justification must be selective, i.e. not 
all practical rules are derivable from the Software Theory and 
the theory may generate additional practical rules. 

In the particular case of the Agile-Design-Rules, the 1st rule, 
on running tests, has a novel interpretation in order to comply 
with the Software Theory self-consistency. Furthermore, a new 
reasonable 5th rule of Orthogonality has been explicitly 
generated, as suggested by Hunt and Thomas [22].  

The particular order of the rules seems less important, as 
long as they rigorously follow from the Software Theory.  The 



rule order is perhaps of interest for rule classification, in which 
the 1st and 2nd rules strictly belong to a Conceptual viewpoint 
and the 3rd and 4th rules belong to an algebraic viewpoint. 

C. Future Work 

In order to solidify the explanation and justification for the 
Agile-Design-Rules one needs to analyze software system 
examples of a variety of sizes. 

Another open issue is the applicability of these or similar 
rules to other development methodologies. 

While linear independence is relevant to Modularity 
Lattices, their orthogonality deserves further investigation. 

D. Main Contribution 

There are three main contributions of this paper. 1st, it 
argues that Linear Software Models, the algebraic Software 
Theory based upon Conceptual Integrity, is a rigorous basis for 
software design methodologies. 2nd, it shows that the Agile-
Design-Rules essence is selectively explained and justified by 
the Software Theory. 3rd, it proposed the idea of systematic 
Design Tests. 
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