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Abstract—Automated GUI testing based on behavioral model
is one of the most efficient testing approaches. By mining user
usage, test scenarios can be generated based on statistical models
such as Markov chain. However, these works require static
analysis before starting the exploration which requires too much
prerequisites and time. In this work, we propose a behavioral-
based GUI testing approach for mobile applications that achieves
faster and higher coverage. Our approach does not conduct
static analysis. It creates a behavioral model from usage logs
by applying a statistical model. The events within the behavioral
model is mapped to GUI components in a GUI tree. Finally,
it updates the model dynamically to increase the probability
of an event that rarely or never occurs when users use the
application. We evaluated our approach on three open-source
Android applications, and compared it with other approaches.
Our approach showed the effectiveness of our tool.
Keywords- Testing Tools; Testing Automation; GUI Testing; An-
droid; Behavioral Model;

I. INTRODUCTION

It is undeniable that the smartphone has become a part of
our life, and adoption has reached almost 3 billion active
smartphone users in 2016 and still increasing year by year.
Due to the huge and intensely competitive market, the high-
quality and flawless graphic user interface is an essential part
of success. Moreover, the mobile application design trend has
been evolving rapidly. GUI testing is a very important part of
achieving a high-quality application.

Various methods for automated GUI testing have already
been studied, implemented, and evaluated [1]. However, ac-
cording to a study conducted by Joorabchi et al [2], more
than 70% of the survey respondents preferred to adopt manual
GUI testing in practice, and less than 5% are engaged in
fully automated GUI testing. Moreover, more than half of
the participants admitted that GUI testing is challenging to
automate and is still labor intensive.

To overcome these challenges, our goal is to create an
automated tool that can be adopted easily, with smaller depen-
dency and higher efficiency. We propose a behavioral-based
automated GUI testing approach which requires as little setup
effort as possible, while still achieving equivalent or better
code coverage than other automated approaches by:

1) Avoiding static analysis by mapping the GUI tree and
behavior model during runtime.

2) Updating the model dynamically to increase the proba-
bility of an event that rarely or never occurs when the
user uses the application.

3) Applying a statistical model to create a behavioral
model.

The remainder of this paper is organized as follows: Section 2
provides related works on GUI testing, Section 3 describes the
methodology as well as the architecture, Section 4 evaluates
our approach, Section 5 outlines the limitations of our tool,
and Section 6 contains our conclusions and future works.

II. BACKGROUND AND RELATED WORKS

There are a number of works related to automated GUI
testing for the Android platform. One of these is a tool called
Monkey [3] which is bundled with Android SDK and is the
most frequently used tool to test Android apps.

Android Monkey generates and sends pseudo-random
streams of GUI events to the Application Under Test (AUT).
It is fully automatic, and it can efficiently test the AUT with
a large number of simple inputs. However, it is not suited for
generating inputs that require human intelligence, and it tends
to generate redundant inputs.

Other approaches such as model-based approaches [4],
[5] have been proposed. Dynodroid [5] is based on random
exploration with several strategies that make its exploration
more efficient compared to a uniform distribution random
testing. Frequency strategy selects the events that have been
least frequently selected so far. Biased random strategy, like
the frequency strategy, maintains a history of how often each
event has been selected, but in a context-sensitive manner.

The model-based exploration strategies consider each in-
dividual activity as a state, and each event as a possible
transition. Amalfitano et al. [4] presented AndroidRipper, an
automated GUI-based tool to test Android apps in a structured
manner. It implements a depth-first search (DFS) strategy and
restarts the exploration from a fresh starting state when it
cannot go to any other states during the exploration.

Recently, several techniques [6], [7], [8], [9] which captures
user’s input have been proposed. Linares-Vasquez, et al. [8]
created a tool called MonkeyLab which mines GUI-based
models that are used to generate actionable scenarios for
both natural and unnatural sequences of events. Gomez et
al. [9] proposed a crowdsourced approach and applied Path
Analysis and Sequential Patterns algorithms to reproduce
context-sensitive crashes by real users.
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III. METHODOLOGY

Although the basis of our approach of using a behavioral
model is not new, our approach is unique in that we continually
update the behavioral model as the test progresses. The initial
behavioral model is created from usage logs using statistical
modeling, but we also consider events that did not appear in
the usage logs. This is done through mapping events in the
behavioral model with GUI components in the GUI tree. Event
probabilities are adjusted as the test progresses.

Fig. 1 shows the overall architecture of the system. In this
paper, the photo editing application in Fig. 2 will be used as a
running example. Our approach can be divided into six steps
as follows:

1) Gather the usage logs beforehand and extract GUI tree
from the AUT (Section III-A).

2) Apply a statistical model to create a behavioral model,
then map with GUI Tree (Section III-B).

3) Select an event from the behavioral model randomly
(Section III-C).

4) Fire the selected event to the AUT (Section III-D).
5) Adjust the probability by frequency and update the

model if needed (Section III-E).
6) Repeat from (2) to (5) until reaching a time limit or

pre-decided number of events.

A. Observation

The purpose of this step is to acquire the mandatory compo-
nents, the usage logs and GUI tree, for generating behavioral
model.

1) Obtain Usage logs: This is the only prerequisite step
before runtime. Usage logs are obtained from the AUT by
using Recorder, the usage recording service. The Recorder ser-
vice was implemented using Android’s AccessibilityService1

which captures events executed by the testers or users in the
form of AccessibilityEvent. These events are then collected
and transferred to the Observer through Android Debug Bridge
(ADB). We focus on the events shown in Table I. Once the
user starts using the application while the Recorder service is
turned on, a recording session starts, which will end when the
user closes the application. Since this data is the basis for the
behavioral model, it is better to have many sessions. One way
to obtain a large amount of sessions is to crowdsource [9].
This process does not require the developer to modify AUTs
source code.

2) Extract GUI Tree from AUT: The GUI tree is a hierarchy
of GUI components, extracted from the AUT during runtime
using Android’s Hierarchy Viewer2. We chose this dynamic
approach, rather than statically analyzing the AUT’s apk file;
this results in adding less than 100ms overhead per action.
Fig. 3 shows a simplified GUI tree from the example activity in
Fig. 2. In this example, the simplified GUI Tree includes 6 GUI
components, e1 backButton, e2 editButton, e3 deleteButton,
e4 shareButton, e5 imageView, and e6 saveButton. In the

1https://developer.android.com/training/accessibility/service.html
2https://developer.android.com/studio/profile/hierarchy-viewer.html

TABLE I
ACCESSIBILITY EVENT TYPES

Event type Description

TYPE VIEW CLICKED Represents the event of click-
ing on a View.

TYPE VIEW LONG CLICKED Represents the event of long
clicking on a View.

TYPE VIEW SCROLLED Represents the event of
scrolling on a View.

TYPE VIEW TEXT CHANGED Represents the event of
changing the text of an
editText.

TYPE WINDOW STATE CHANGED Represents the event of open-
ing a PopupWindow, Menu,
Dialog, etc.

GUI tree, each component contains its type, resource-id, text,
coordinate, and possible actions that the user can take.

B. Behavioral Model Generation and Mapping

In this step, the behavioral model is created from usage logs,
then events are mapped to GUI components in the GUI tree.

1) Behavioral Model Generation: The behavioral model
is created from usage logs by approximating the conditional
probabilities using the Markov assumption (see a simplified
behavioral model in Fig. 4). We use 5-grams model. An n-
gram model is simply a sequence of words. In the context
of software testing, these words are events. The n refers
to the number of events. Consider a sequence of events
etap1, etap2, ehold1, eswipeUp. If n = 2, then the 2-gram or
bigram would be:

1) p(etap2|etap1)
2) p(ehold1|etap2)
3) p(eswipeUp|ehold1)

And for n = 3, the 3-grams or trigram would be:
1) p(ehold1|[etap1, etap2])
2) p(eswipeUp|[etap2, ehold1])

Where p(ex|[ej , ek]) is the probability of event ex being
selected given history events [ej , ek]. With larger n, a model
can store more context with a well-understood space-time
tradeoff. It is possible to use higher than 5-gram if more
sessions of usage log and processing power are available.

In practice, the app might not be entirely explored by users.
In Fig. 4, suppose that there is another event e6 that can occur
when the user is at Activity B, but it is missing from the
simplified behavioral model. This means that the model is not
fully covered and that event e6 will never be mapped, selected,
and executed by our tool. We call the event that is available
in the GUI tree but does not exist in the model an unknown
event.

To overcome this problem, it is necessary to adjust the
probability distributions. We use KenLM [10], which is a
fast and low-memory language model toolkit. It includes the
modified Kneser-Ney [11] technique, which is considered to
be an effective smoothing technique. The three key ideas of
the technique are:



Fig. 1. An overview of the tool’s architecture.

Fig. 2. The Example Application Under Test

Fig. 3. A Simplified GUI Tree

• Absolute-discounting: in order to give an unknown event
some probability, we must reduce the probability of the
others in order to retain a valid probability distribution.

• Interpolation: recursively combine probabilities for all k-
grams where k ∈ 1, . . . , n. If an event sequence has any
k-gram suffix appear in the model, it will yield a non-zero
probability.

• Histories: the number of contexts that each event appears
in should be taken into account. For instance, if an event

occurs only in a specific context, it should be less likely
to appear in a novel context.

Fig. 5 shows one example behavioral model after smoothing.
The unknown event e6, as well as rare events e1 and e5 receive
some probability mass from the others.

2) Mapping behavioral model with GUI Tree: We do not
actually merge an event and a GUI component together.
Each event within the behavioral model is mapped to a GUI
component within the GUI tree using a unique resource-id as
a key, or with type and text if resource-id is not defined. The
GUI mapper is implemented using a hash table for quicker
lookup. The table is stored in main memory and updated
each time after Observation (Section III-A). After selecting
an event, the mapper looks up the table and returns the
corresponding GUI fragment to the event.

C. Selection

The purpose of our tool is to test the application, not to
create a natural action sequence. Therefore, the next event
enext will be randomly selected instead of naively picking
the event with the highest probability. Let e1, e2, e3, . . . , en ∈
{possibleEvents} and h be the history of previously selected
events. enext will be randomly selected by Event Selector
based on the smoothed probability of an event given a se-
quence of previous selected events:

enext = ω([P (e1|h), P (e2|h), P (e3|h), . . . , P (en|h)])

where ω(L) is the weighted random function of a
list L, [P (e1|h), P (e2|h), P (e3|h), . . . , P (en|h)] ∈ L,∑n

i=1 P (ei|h) = 1, and P (ex|h) is the probability of event ex
occurring given history h after updating (see Section III-E).
From Fig 5, L should be [0.07, 0.14, 0.28, 0.41, 0.07, 0.03]
for e1 to e6, respectively. We then calculate partial sum of the
list to be [0.07, 0.21, 0.49, 0.90, 0.97, 1.00]. ω will uniformly
random generate a number between 0.00 and 1.00 and select
an ex where the generated number is less than or equal to



Fig. 4. A Simplified Behavioral Model Fig. 5. Behavioral Model after smoothing Fig. 6. Behavioral Model after updating

its partial sum but greater than ex−1. Suppose the number is
0.99. In this case, enext is e6.

D. Execution

The Event Executor executes the enext that was chosen by
Event Selector on an actual mobile device or an emulator
by UIAutomator, which is a custom wrapper around Android
Debug Bridge written in python. Our tool can execute events
such as Clicking, Long-Clicking, Scrolling, and Texting. In
our tool, these events are defined as follows:

• Clicking: to tap and release immediately at the center of
the view.

• Long-Clicking: to tap and hold 3 seconds before releasing
at the center of the view.

• Scrolling: to tap and drag to (x+ ∆x, y+ ∆y) position.
• Texting: to input an arbitrary pre-generated string3

Suppose enext is the e6 from Fig. 4, and it is clickable. The
Event Executor will fire a clicking event to the center of the
view, which in this case would be saveButton.

E. Updating

After execution, the model will be updated by using biased
random technique to adjust selected/executed event’s probabil-
ities. It reduces a factor of small delta δ from the previously
selected and executed event:

p′(ex|h) = p(ex|h)− d(ex, δfx) (1)

where fx is the frequency of ex, d(ex, δfx) is the discounted
value of ex, and p′(ex|h) is the probability of event ex given
history h. Suppose d(e6, δf6) = 0.05. Using equation (1),
p′(e6|h) is 0.025.

After reducing some probability from an ex, each p′ proba-
bility must be recalculated in order to retain a valid probability
distribution by dividing it with total p′ probability.

P (ex|h) =
p′(ex|h)∑n
i=1 p′(ei|h)

(2)

The results of equation( 2) are shown in Fig 6. The probability
of P (e6|h) decreases. On the other hand, P (e1|h) to P (e5|h)

3https://github.com/minimaxir/big-list-of-naughty-strings

TABLE II
LIST OF APPS USED IN OUR EVALUATION

App Version #LOC Desc

Anymemo 8.3.1 8989 a flash card learning software.
World Clock 0.6 1251 a simple clock around the

world app.
Weight Chart 1.0.4 1149 a log keeper application of

body weight and display on a
graphical chart.

slightly increases. This will allow other events to have a
greater chance to be selected which should lead to higher code-
coverage.

Finally, after executing e6 and repeating the observation
step (Section III-A), the Updater updates the behavioral model
(Fig. 6).

IV. EVALUATION

We conducted a case study to evaluate our approach fo-
cusing on code coverage, and compared it to three popular
approaches: Android Monkey, manual testing, and Dynodroid
tool.

A. Target Application

We target three unmodified open-source Android applica-
tions: Anymemo[12], World Clock[13], and Weight Chart[14].
We chose these apps since they have dynamic content, static
content, and complex user interface, respectively.

Table II shows the version numbers and short description
of the applications.

B. Experiment setup

All our experiments were done using Android API 19,
the current baseline version for application development, on
Nexus 5’s emulator with 1586 MB of RAM. The emulator
was run on a 64-bit MacOS 10.12.4 machine with 2.5 GHz
Intel Core i7 processors and 16 GB of RAM. The usage logs
were collected by asking five computer science students to use
each application for five minutes. No restrictions were placed
on how they were to use the applications. For each experiment
session, an AUT was installed on a freshly-created emulator



with only default setting. Each experiment session for our tool,
Android Monkey, and Dynodroid consists of 5,000 touchable
events and we added a delay between events of 500ms to
ensure that screen transition or animation has completed before
executing the next event. For manual testing, we asked an
Android user to manually exercise these apps as much as
possible within 40 minutes. After each experiment session,
the emulator was destroyed to prevent it from affecting later
sessions. We used Emma [15] and custom shell script to collect
coverage measurement from AUT.

C. Results and Discussion

The results of our study are summarized in Table III. We
collected code coverage at 500 event intervals for a total of 10
data collection points. The most left column denotes the testing
approaches including our approach, Android Monkey, Manual
testing by human, and Dynodroid, respectively. The numbers
in the table show the number of lines and percentage of code
coverage by total lines of code (see Table II) that were covered
by each approach for the three applications tested. Our tool
outperformed Android Monkey and Dynodroid in Anymemo
but did not outperform manual testing.

Manual testing easily outperformed our tool and other
approaches, achieving the highest coverage for all three ap-
plications. This can be expectable, given that the human
can provide more intelligent text or sequential inputs. Fig. 7
shows the accumulated code coverage for Anymemo. The X
axis denotes the number of events based on the 500 event
intervals. The plots for manual testing are the final result
since we did not record coverage during manual testing. This
is because we did not want to disturb our human subjects
during the session. Due to our behavioral model, our tool
successfully completed a series of operations (in this specific
case, reviewing flash cards), and was able to conduct further
operations; but Android Monkey and Dynodroid could not
attain this level of operations within 5000 events. However,
our tool failed to generate a valid string for sensitive cases,
for instance, import and export path, since our tool records
only the event type, and not a particular string.

The results for World Clock and Weight Chart are just
slightly higher than Android Monkey. Moreover, in Weight
Chart, our tool significantly underperformed manual testing
and slightly lower than Dynodroid. A possible issue might
be the fact that our tool cannot detect and perform complex
gesture such as pinching or dragging to the Canvas compo-
nents [16]. For example, in Weight Chart, the possible actions
for a display graph, a line graph for showing weight data,
were not detected by our tool. This resulted in several actions
to not be reached.

D. Threats to Validity

There are potential threats to validity of our results. The first
threat to validity would be the use of students as the human
subjects. Since the task was to compare the coverage from
manual testing and other approaches, there is a possibility that
professional testers are better at exercising AUT.

TABLE III
ACCUMULATED CODE COVERAGE AFTER 5000 EVENTS OR 40 MINUTES.
THE STATS INCLUDE THE CODE COVERAGE FROM OUR TOOL (#COV),

FROM ANDROID MONKEY (#MCOV), FROM MANUAL TESTING BY
HUMAN (#HCOV), AND FROM DYNODROID (#DCOV)

App Anymemo World Clock Weight Chart

#COV 2885 (32.1%) 1120 (89.5%) 608 (52.9%)
#MCOV 1856 (20.6%) 1023 (81.9%) 536 (46.6%)
#HCOV 4173 (46.4%) 1149 (91.8%) 986 (85.8%)
#DCOV 1327 (14.8%) 1096 (87.6%) 673 (58.6%)

The second threat to validity is the three applications we
used. We chose the three because they were open-source, have
several categories, and were used by various studies[5], [1].
However, the sizes of our subject applications are relatively
small compared with the top applications in Google Play4. Fur-
ther evaluation with larger applications should be conducted.

The third threat to validity is the usage logs for a behavioral
model. We believe that testing the app casually vs seriously
gives a different result. Since the benefit is not clear, we did
not provide particular restrictions or goals during the recording
sessions.

V. LIMITATIONS OF OUR TOOL

This section outlines the current limitations of our tool.

A. Minimum Android API level

Our tool works on Android API level 16(Version 4.1.x)
and onward. However, this is not significant since only 2%
of Android device are API level 15 and below[17].

B. Scrolled Events need to be throttled

Since the scrolled events are emitted from the Android’s
AccessibilityService constantly while the user is scrolling, a
scroll event usually becomes repetitive events which disrupt
the model’s probability distribution. To prevent that from
happening, our tool merges consecutive scroll events into
a single scroll event. However, there is a chance that two
consecutive but different scrolls are merged unintentionally.

C. Resource-id must be provided

It is possible that the GUI component’s resource-id is not
defined by developers. In this case, other attributes are used
for mapping (see Section III-B2).

D. Canvas component’s properties are not detected

We rely on UIAutomator to dump the GUI hierarchy during
runtime. It fails to extract a canvas component’s properties,
which prevents our tool from executing corresponding GUI
events.

4https://play.google.com



Fig. 7. Accumulated code coverage for Anymemo

VI. CONCLUSION AND FUTURE WORK

In this paper, we presented our on-going work on automat-
ing GUI testing for Android applications. Our approach com-
bines manual testing aspects by creating a behavioral model
based on actual usage logs. We map the behavioral model with
GUI tree in runtime, and handle the zero probability unknown
events with modified Kneser-Ney smoothing technique.

We have implemented and conducted a comprehensive
evaluation of our approach. We compared it with existing
Android testing approach such as Android Monkey, manual
testing, Dynodroid on open-source Android applications. Our
approach outperforms Android monkey for all applications,
and state-of-the-art tool Dynodroid for two out of three appli-
cations, but it is still behind manual testing.

For the future works, we will extend the actionable events
that our tool can handle such as Enabling, Pinching, and
Dragging. We also plan on extending our tool based on the
limitations given in section V. We intend to evaluate our tool
with larger Android application in the Google Play. Finally,
we will further investigate our tool in term of time to reach
the saturation point [18], and ability to find bugs.
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