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Abstract—Fork-based symbolic execution would waste large 

amounts of computing time and resource on invulnerable paths 

when applied to vulnerability detection. In this paper, we propose a 

statically-guided fork-based symbolic execution technique for 

vulnerability detection to mitigate this problem. In static analysis, 

we collect all valid jumps along vulnerable paths, and define the 

priority for each program branch based on the ratio of vulnerable 

paths over total paths in its subsequent program. In fork-based 

symbolic execution, path exploration can be restricted to 

vulnerable paths, and code segments with higher proportion of 

vulnerable paths can be analyzed in advance by utilizing the result 

of static analysis. We implement a prototype named SAF-SE and 

evaluate it with ten benchmarks from GNU Coreutils version 6.11. 

Experimental results show that SAF-SE outperforms KLEE in the 

efficiency and accuracy of vulnerability detection. 
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vulnerability detection; program analysis 

I. INTRODUCTION 

Symbolic execution was first proposed by James C. King [1] 
in 1976. Fork-based symbolic execution uses symbolic values as 
inputs to execute target programs and replaces concrete program 
operations with ones that manipulate symbolic values during the 
execution. When program execution branches based on 
symbolic values, it follows each valid branch and collects the 
branch condition as the constraint of the corresponding path. 
When one path terminates or hits a bug, a test case will be 
generated by solving the collected constraints. Symbolic 
execution has two advantages: 1) having high code coverage and 
2) producing no false positives. 

Recently, fork-based symbolic execution has been applied to 
the field of vulnerability detection. The key challenge lies in that 
the goal of vulnerability detection is to expose vulnerable code 
as soon as possible and vulnerable paths, i.e. paths involving 
vulnerable code, only occupy a small proportion in programs, 
while fork-based symbolic execution selects branch blindly, 
leading to a considerable waste of computing time and resource 
on exploring invulnerable paths. Besides, the vulnerability 
detection accuracy would also be affected, i.e. generating false 
negatives, if computing time and resource is limited in real-
world scenarios. Furthermore, path explosion would worsen 
both the efficiency and accuracy of vulnerability detection if 
target programs are in large scale. 

To address this issue, we propose and implement a statically-
guided fork-based symbolic execution technique for 
vulnerability detection, named SAF-SE. Static analysis process 
marks vulnerable paths and collects all valid jumps along them. 
These valid jumps would restrict symbolic execution to 
vulnerable paths only, and generate test cases which can violate 
the security constraints of sensitive operations. Furthermore, we 
define the priority for each program branch based on the ratio of 
vulnerable paths over total paths in its subsequent program. 
These branch scores are used by execution state selector to 
determine the priority of each execution state. Therefore, 
program segments with higher proportion of vulnerable paths 
will be explored first and more vulnerable code will be detected 
in the circumstance of limited computing time or resource. 
Hence, SAF-SE can not only accelerate fork-based symbolic 
execution process but also improve the accuracy of vulnerability 
detection. 

This paper makes three contributions. First, we propose a 
statically-guided fork-based symbolic execution technique for 
vulnerability detection, in which we restrict fork-based symbolic 
execution on vulnerable paths. Second, we score program 
branches based on the ratio of vulnerable paths in subsequent 
program. Hence, code segments with higher proportion of 
vulnerable paths would be analyzed earlier. Third, we 
implement a prototype name SAF-SE and evaluate it with 10 
benchmarks from GNU Coreutils 6.11. Experimental results 
show SAF-SE can improve vulnerability detection efficiency, 
and reduce false negatives when time and resource is limited. 

II. DESIGN OF SAF-SE 

Figure 1 illustrates the architecture of SAF-SE. It consists of 
three components:  graph generation module, static analysis 
module and fork-based symbolic execution module. Note that 
users can define sensitive operations and corresponding security 
constraints in user-defined configuration file.  

A. Graph Generation Module 

Graph generation module reads LLVM bytecode file as 
input and generates the call graph and control flow graphs 
(CFGs). The call graph and CFG generation process in LLVM 
Utils doesn’t consider dynamic link library functions. Therefore, 
we utilize a light-weight symbolic executor to obtain a relatively 
complete program. In it, we simulate the link process by 
executing the target program symbolically with the simplest  
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Figure 1.  Architecture of SAF-SE 

symbolic strategy, i.e. one symbolic input sized of one character 
in order to get dynamic library functions in records. Considering 
the small time consumption, i.e. less than 10 seconds, we call it 
light-weight symbolic executor.  

B. Static Analysis Module 

Static analysis module at first locates sensitive operations in 
target programs and divides functions into three categories. 
Then valid jumps analysis collects all valid jumps by marking 
the conditional values of each branch instruction that can lead 
to sensitive operations. At last, branch score analysis calculates 
the score of program branch according to the ratio of vulnerable 
paths over total paths in its subsequent program. 

1) Function Classification 
We define two attributes for each function, i.e. vul-related 

and vul-lead. 

Definition 1. Function f is vul-related, if there are sensitive 
operations in f, or f calls another vul-related function. 

Definition 2. If function h invokes function f at call site loc, 
and there are sensitive operations or vul-related function calls 
on the paths from loc to the exits of function h, then function f 
is vul-lead. 

To calculate vul-related attribute, initially, we mark 
functions with sensitive operations inside as vul-related. Then, 
callers of vul-related functions are also marked as vul-related. 
To calculate vul-related attributes, first we locate the positions 
of sensitive operations and vul-related function call sites as locs 
in each function. Then, we initialize all the functions called 
between the function entry and locs as vul-lead. At last, all 
callees of vul-lead functions are also marked as vul-lead. 

According to the attributes, functions in target programs can 
be divided into three categories, i.e. T1~T3, and different 
execution strategies would be applied to different categories. 

a) T1: vul-lead = true: sensitive operations would be 

invoked after T1 functions. Since operations within T1 function 

might affect the sensitive operations afterward, all paths inside 

would be executed symbolically to gain conservative results. 

b) T2: vul-related = true and vul-lead = false: T2 

functions have sensitive operations inside and have no sensitive 

operation after the execution of them. Hence, invulnerable paths 

inside can be pruned in symbolic execution. 

c) T3: vul-related = false and vul-lead = false: T3 

functions neither involve sensitive operations, nor have 

sensitive operations afterward.  Hence, symbolic executor 

would terminate the execution process for T3 function calls. 

2) Valid Jumps Analysis 
Valid jumps analysis aims to collect the valid jumps of each 

branch instruction in T2 functions. Valid jump is the conditional 
value of branch instruction which can lead execution to 
sensitive operations. Algorithm 1 illustrates this process for 
function fn. Vtarget-op refers to the set of sensitive operations and 
vul-related function calls. Tuple < f, inst, choice> is used to 
denote one valid jump, i.e. the instruction inst in function f 
would lead to sensitive operations under the conditional value 
choice. Setvalid-jmp stores all the collected valid jumps.  

Our valid jumps analysis is at basic block granularity. 
Initially, basic blocks involving Vtarget-op are marked as sensitive 
(line 1). Then, for each sensitive basic block bb, we fetch each 
of its preceding basic block pbb (line 3) and set the branch from 
pbb to bb as a valid jump (lines 5 to 7). At last, pbb is also 
marked as sensitive (line 8). This process will continue until all 
sensitive basic blocks have been analyzed. 

3) Branch Score Analysis 
In branch score analysis, for each program branch, first we 

count the number of total paths and vulnerable paths, then score 
the branch based on the ratio of vulnerable paths over total paths 
in its subsequent program. These scores would be further used 
by execution state selector to explore the branch with higher 
proportion of vulnerable paths in advance. Note that we count 
the loop as one path when calculating the number of paths due 
to the lack of actual execution times of the loop structure in 
static analysis. 

C. Fork-based Symbolic Execution Module 

Fork-based symbolic execution module explores vulnerable 
paths following the branch scores and generates test cases 
which can violate security constraints for sensitive operations.

 

Algorithm 1

input: CFGfn, Vtarget-op

output: Setvalid-jmp

procedure calValidJmps (CFGfn, Vtarget-ops)

1     Vsen-BBs = collectSensitiveBBs (CFGfn, Vtarget-op);

2     for each BasicBlock bb ∈Vsen-BBs do

3          Vparent-BBs = collectParentBBs (CFGfn, bb);

4          for each BasicBlock pbb in Vparent-BBs do

5               Instruction inst = last branch instruction in pbb;

6               validChoice = getValidCondition (pbb, bb);

7               Setvalid-jmp.insert( <fn, inst, validChoice> );

8               Vsen-BBs.insert(pbb);

9     return  Setvalid-jmp;
 



Generally speaking, it consists of three main parts: instruction 
executor, execution state selector and constraint solver. 

1) Instruction Executor 
We modify the instruction executor to analyze vulnerable 

paths with the results of function classification and valid jumps 
analysis. When we deal with sensitive operations, a verify 
process check()  will be used to check if current constraints 
violate security constraints. If so, a test case would be generated 
by the constraint solver and reported to users. 

When executing Call instructions, we check whether the 
callee is T3 function. If so, we would terminate current 
execution process and remove the execution state from the 
execution state pool based on the analysis in Section II-B-1). 

As for Branch instructions and Switch instructions, we at 
first check whether current function belongs to T1 function. If 
so, we follow the original fork-based symbolic execution 
process. If current function is T2 function, execution flow can 
only be transferred to the valid succeeding basic blocks 
according to the result of valid jumps analysis. For each valid 
branch, we construct a new execution state by copying the 
current execution state, changing instruction pointer pc to the 
valid destination instruction, and adding condition expression 
into constraint set. At last, we insert the new execution states 
into the execution state pool. 

2) Execution State Selector 
Execution state selector aims to select an execution state 

from the execution state pool. Since existing selection strategies, 
e.g. depth-first search (DFS), breadth-first search (BFS), and 
covering new focus on program coverage, they cannot 
accelerate the process of vulnerability detection. Hence, we 
design a new selection strategy for vulnerability detection. 
Leveraging the results of branch score analysis, we select the 
execution state in the order of scores. In this way, code 
segments with high proportion of vulnerable paths would get 
analyzed in advance, accelerating vulnerable paths exploration 
and explore as many vulnerable paths as possible with limited 
computing time and resource. 

III. IMPLEMENTATION AND EVALUATION 

A. Implementation Details 

We have implemented a prototype named SAF-SE. In it, we 
use a fork-based symbolic executor with one symbolic 
argument, whose size is one character, as the light-weight 
symbolic executor, and LLVM-3.1 utils to generate call graph 
and CFGs. As for the static analysis part, we implement a 
LLVM optimization pass written in about 1,600 lines of C++ 
on call graph and CFGs. In fork-based symbolic execution 
module, we adopt KLEE [2] and modify its instruction executor 
and the execution state selector based on previous discussion.  

B. Experimental Setup 

To evaluate the effectiveness of SAF-SE, we applied it on 
ten programs from GNU Coreutils version 6.11, and compared 
the results with KLEE [2]. In our experiments, we set seven 
library function calls as sensitive operations, including alloc, 
malloc, realloc, calloc, memcpy, memccpy and memset. All 
experiments were run on a machine with 3.20GHz Intel(R) 

Core(TM) i5-3470 processor and 4G of memory, running 64-
bit Linux 3.2.0. 

C. Results of Static Analysis 

Table 1 shows the experimental results of static analysis on 
the ten benchmarks. The time cost (Column 2) in static analysis 
is negligible, averaging about 0.389s. Columns 3 to 5 show the 
distributions of three types of functions. We can observe that 
T2 functions, in which invulnerable paths can be pruned, 
account for the largest proportion, about 48.4% on average. 
Column 6 indicates the number of the basic blocks that can be 
pruned by static analysis, including all the basic blocks in T3 
functions and those along invulnerable paths in T2 functions. 
On average, 21.8% of all basic blocks are free of symbolic 
execution. 

D. Results of SAF-SE 

To assess the effectiveness of SAF-SE, we look into the 
following two aspects: 1) we applied SAF-SE and KLEE on five 
benchmarks with the same arguments, respectively. For each 
benchmark, both SAF-SE and KLEE completed the whole 
symbolic execution process, and we assessed the reduction in 
execution time and executed instructions of SAF-SE over KLEE; 
2) we applied SAF-SE and KLEE on the other five benchmarks 
with the same arguments, and we limited the execution time to 
60 minutes, so as to assess the sensitive operation coverage 
promotion of SAF-SE over KLEE. 

Table II shows the experimental results of the first aspect. 
Columns 2 to 4 show the results of KLEE, including the 
execution time, the number of analyzed instructions and the 
number of analyzed sensitive operations, and Columns 5 to 7 
show those of SAF-SE. On average, SAF-SE achieved about 
23.52% execution time reduction and about 23.17% analyzed 
instruction reduction over KLEE. In a word, SAF-SE can spend 
less execution time and execute fewer instructions than KLEE in 
completing the symbolic execution process without missing any 
sensitive operations. 

Table III describes the experimental results of the second 
aspect. The meanings of the columns are similar to those in 
Table II. Each benchmark was run for 60 minutes with the same 
symbolic arguments: --sym-args 1 5 10 --sym-files 2 100, which 
means the number of symbolic arguments are from 1 to 5, and 
the length of each symbolic arguments is up to 10 characters. 
Meanwhile, we use two symbolic files which are not longer than 
100 characters. From the results we can see that, SAF-SE 
executed 1.70x of instructions that KLEE executed, and 
discovered 1.37x of sensitive operations that KLEE covered in 
the same execution time. It is worth noting that the effectiveness 
in sensitive operation coverage promotion is highly dependent 
on the structure of each program and on the distribution of 
sensitive operations. We can conclude that SAF-SE can explore 
more vulnerable paths under limited execution time than KLEE. 

The Experimental result proves SAF-SE can improve 
vulnerability detection efficiency of fork-based symbolic 
execution by pruning invulnerable paths in advance. Moreover, 
SAF-SE can reduce false negatives in the circumstance of 
limited computing time and resource with the help of branch 
scores from static analysis.

 



TABLE I.  RESULTS OF STATIC ANALYSIS 

program time(s) T1 (num/rate) T2 (num/rate) T3 (num/rate) Prune BBs (num/rate) 

mkdir 0.410 167/0.498 154/0.460 14/0.042 750/0.209 

mkfifo 0.391 143/0.451 160/0.505 14/0.044 796/0.236 

mknod 0.379 148/0.460 160/0.497 14/0.043 845/0.242 

paste 0.363 146/0.458 159/0.498 14/0.044 777/0.226 

ptx 0.685 196/0.513 167/0.437 19/0.050 886/0.158 

seq 0.437 148/0.454 163/0.500 15/0.046 810/0.234 

chmod 0.354 210/0.532 161/0.409 23/0.058 851/0.198 

echo 0.281 132/0.423 165/0.529 15/0.048 841/0.251 

basename 0.287 142/0.444 163/0.509 15/0.047 790/0.237 

cat 0.300 148/0.460 159/0.494 15/0.046 816/0.234 

AVG 0.389 158.0/0.470 161.1/0.484 15.8/0.046 816.2/0.218 

TABLE II.  RESULTS OF BENCHMARKS COMPLETED SYMBOLIC EXECUTION 

program 
KLEE SAF-SE 

time(s) instruction sensitive op time(s) instruction sensitive op 

echo 1548.01 40878183 20409 1045.72(-32.45%) 29702739(-27.34%) 20409 

chmod 315.48 63130620 28425 243.52(-22.81%) 48300940(-23.49%) 28425 

mkfifo 323.71 61459653 26275 228.82(-29.31%) 48493576(-21.10%) 26275 

mknod 320.3 54853060 21937 259.67(-18.93%) 41718084(-23.95%) 21937 

basename 25.45 5264958 2337 21.85(-14.16%) 4213381(-19.97%) 2337 

TABLE III.  RESULTS OF BENCMARKS RUN FOR 60 MINUTES 

program 
KLEE SAF-SE 

time(s) instruction sensitive op time(s) instruction sensitive op 

paste 3832.64 47913926 29752 3644.73 163029964(+240.26%) 61813(+107.76) 

ptx 3706.1 99826914 40368 3718.47 102729476(+2.91%) 41703(+3.31%) 

cat 4169.63 11818118 16565 4179.68 11868664(+0.43%) 16921(+2.15%) 

seq 3669.66 81698491 35033 3668.82 103876566(+27.15%) 40830(+16.55%) 

mkdir 3699.58 315383144 50299 3697.19 574760703(+82.24%) 76906(+52.90%) 

 

IV. RELATED WORK 

KLEE [2] is a widely used fork-based symbolic execution 
tool evolves from EXE [3]. Vitaly Chipounov et al. [4] 
proposed selective symbolic execution and implemented S2E 
by adopting KLEE as symbolic executor and using QEMU [5] 
to simulate execution environment. Combining symbolic 
execution with concrete execution, Patrice Godefroid et al. 
proposed the first concolic symbolic execution tool SAGE [6] 
for binary code. Symbolic execution has been widely used in 
vulnerability detection. SmartFuzz [7] leverages concolic 
symbolic execution to find integer bugs in x86 binary 
programs. Crashmaker [8] optimized the generational search 
algorithm in SAGE. However, these techniques still have to 
traversal the whole program even when detecting specific 
sensitive operations, while SAF-SE can improve the 
efficiency and accuracy of vulnerability detection by 
restricting path exploration on vulnerable paths.  

V. CONCLUSION 

In this paper, we propose a statically-guided fork-based 
symbolic execution technique for vulnerability detection and 
developed a prototype SAF-SE to restrict path exploration on 
vulnerable paths and to explore code segments with higher 
proportion of vulnerable paths earlier by utilizing the results 
of static analysis. We evaluated SAF-SE with ten benchmarks 
from GNU Coreutils version 6.11, and compared it with 
KLEE. The experimental results show that, SAF-SE improves 
the efficiency of vulnerability detection a lot, and reduces 

generating false negatives in the circumstances of limited 
computing time and resource. 
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