Visualizing Visual Parser Executions

Gennaro Costagliola, Mattia De Rosa
Dipartimento di Informatica, University of Salerno, Fisciano, SA, Italy
{gencos, matderosa} @unisa.it

Mark Minas
Universitidt der Bundeswehr Miinchen, Neubiberg, Germany
mark.minas @unibw.de

Abstract

Parsing of visual structures like diagrams and graphs
is more complicated than parsing strings. This is so be-
cause visual structures are inherently more complex than
strings, because visual grammars are more difficult to write
than string grammars, and because the algorithms for pars-
ing visual structures are usually more complicated than for
parsing strings. The developer of a visual parser, therefore,
needs more tool support than a developer of a string parser.
In fact, developing and debugging a visual parser without
proper visualization of the parsing process is very challeng-
ing.

This paper describes a visualization approach that arose
from this need. Its main focus is on the interaction of the
developer with the visualization tool in order to explore the
execution process of the parser. It has evolved from experi-
ences with developing and debugging parsers by applying
different visual parsing methods. In order to better describe
it we introduce a concrete example.

Keywords: visual parsing, graph parsing, parser visual-
ization.

1. Introduction

Parsing strings with respect to a grammar is well-known
and well-understood since some 50 years [18]. Every com-
piler of a (textual) programming language uses a string
parser to analyze the syntactic structure of its input and to
control its translation into other formats, in particular ma-
chine language or intermediate representations. Parser gen-
erators make building string parsers a simple task [26, 23,
14]. A significant part of the research on visual languages
in the last 25 years [5] has focused on the study of their se-
mantics and the possibility to specify them in a formal way,
also for use in visual programming languages. Researchers

DOI reference number: 10.18293/DMSVIVA20-013

have therefore tried to analyze them using approaches sim-
ilar to those used for strings, but with less success than in
the string domain [22]. One reason is the obvious fact that
parsing strings is much easier than visual parsing. All estab-
lished string parsing techniques take advantage of the linear
structure of strings, in particular of substrings of the input.
This is apparent for top-down and bottom-up parsers using
LL and LR parsing, which process the input string from left
to right, i.e., analyze prefixes of the input. Even table-based
parsers like Cocke-Younger-Kasami parsers [33] depend on
the strings’ linear structure although they do not process in-
put strings from left to right. Instead, they construct non-
terminals for arbitrary substrings (and not just prefixes) of
the input string, starting with substrings of length one and
eventually for the entire input, if it is valid. Substrings
are easily represented by just two numbers, e.g., start and
length. Parsing errors can be easily communicated to the
user that way. This task is more complicated when a vi-
sual parser fails; it must then visualize those parts of the
input that have already been processed when the error oc-
curred. The situation becomes even more complicated when
an implementor develops a parser, even when using a parser
generator. Understanding the flow of execution of a visual
parser and its consequent validation without proper visual-
ization of the parser’s progress and its data structures is then
tedious, other than very challenging.

The use of visual structures like graphs have recently
gained some importance in the field of natural language
processing (NLP) where the meaning of sentences is rep-
resented by graphs [11]. Their syntactic structure is defined
by grammars, and (graph) parsers are used for analyzing
them. Several approaches are used in this context, and some
tools have emerged [10]. However, similar to the situation
in earlier VL research, appropriate parser visualization tech-
niques and tools are yet missing.

This paper extends [6] by describing the analysis-based
approach that led to the development of prototypical tools

for properly visualizing the execution of visual parsers. We
first describe the need for such tools which became appar-
ent when the authors developed visual parsers. Based on
these needs and experiences with first visualization proto-
types, we reconsidered the problem and identified the pri-
mary use cases. We generalized these results by deriving
requirements that parser visualization tools should fulfill in
order to effectively and efficiently support the realization of
visual parsers. A general parser visualization architecture
has been developed from these requirements and realized in
two independent prototypical tools.

The rest of the paper is structured as follows: we start by
presenting our running example describing the basic con-
cepts of Visual Generalized LR (VGLR) parsing and the se-
mantic representation of natural language sentences in Sec-
tion 2, then, in Section 3 we outline the primary use cases
of a visualization tool for visual parsers and derive the vi-
sualization requirements in Section 4. In Section 5 we de-
scribe the proposed parser visualization architecture used
to implement our prototypes and related work in Section 6.
Section 7 concludes the paper.

2. The application example: VGLR parsing
and NLP

The proposed visualization and exploration approach can
be used with many different types of visual parsers, either
top-down or bottom-up. In fact, it has already been used
with two different VGLR parser approaches based on [con-
textual] hyperedge replacement grammars ([CJHRGs) [13,
9, 24] and extended positional grammars [7, 8].

In this paper, the running example is based on a VGLR
parser built for a CHRG from the domain of natural lan-
guage processing. In the following, the basic concepts of
VGLR parsing are given, followed by a brief description
of the natural language representations used as input sen-
tences.

The Generalized LR (GLR) parsing algorithm [32, 28]
extends the well-known LR parsing algorithm [18] to am-
biguous string grammars and Visual GLR (VGLR) parsing
algorithm extends GLR parsing to the case of graph lan-
guages.

We assume that readers are familiar with the standard LR
parsing algorithm, which analyzes an input string from left
to right, maintains a stack of states through the shift/reduce
actions, and produces a single parse tree if the input string
is valid. In order to handle nondeterminism, a generalized
parser works on multiple stacks at the same time and pro-
duces multiple parse trees, one for each interpretation. A
GLR parser is able to do this efficiently by storing the stacks
in a so-called graph-structured stack (GSS; see Fig. 5 for an
example) and packing the resulting parse trees in a packed
parse forest (see Fig. 6 for an example). A GSS is a par-

ticular directed acyclic graph representing each individual
stack as a path from some top-most state to the unique ini-
tial state. There are three main operations that can be per-
formed on a GSS: splitting, combining and local ambiguity
packing. Each time the parser faces two conflicting actions
(shift/reduce or reduce/reduce) the current stack top is split
to accommodate two new branches in the graph. Whenever
a new stack top, resulting from a shift action, happens to
be equal to an already existing stack top, they are combined
into one node. A local ambiguity packing is the operation of
merging two equal branches. This happens when the same
fragment of the input can be reduced to the same nonter-
minal in different ways. The goal of these operations is
to maximize the sharing of the common parts of the mul-
tiple stacks. In fact, working on the GSS instead of on a
set of complete copies of different stacks does not only save
space, but also time: instead of repeating the same opera-
tions on separated stacks that have common parts, the parser
has to perform them only once.

By following the same idea, a packed parse forest stores
the many parse trees produced by analyzing an ambiguous
input by sharing all of their common subtrees. The relation
between a GSS and its corresponding packed parse forest
is given by the fact that each edge in the GSS corresponds
to a vertex of the forest and the subtree rooted in it. In this
way, a vertex (called packed vertex) in the forest may be
root of distinct subtrees corresponding to the same shared
GSS branch (due to local ambiguity packing).

When dealing with non-linear sequences such as graphs
or other types of diagrams, a visual GLR (VGLR) parser
must also deal with the fact that there is no a priori reading
sequence of visual tokens. This may force a VGLR parser to
pursue different reading sequences in parallel while it per-
forms the search process. This has consequences as follows:

e Each parse stack corresponds to a specific subset of
visual tokens that have been read already. Hence, the
parser must store, for each stack separately, which vi-
sual tokens have been read.

Sets of stacks are stored as a GSS like in GLR parsers.
Each GSS node corresponds to a state. Additionally,
each GSS node keeps track of the set of visual tokens
that have been read so far. Note that GSS nodes may be
shared only if both their states and their sets of visual
tokens coincide.

e VGLR parsers cannot process their sets of stacks in
rounds. When a stack is obtained by executing a shift
action, the parser must not wait until the same visual
token has been read in all the other stacks (as done for
GLR parsing); they may read other tokens first. As a
consequence, a VGLR parser needs different strategies
from that adopted by GLR parsing to control the order
in which stacks are processed. Strategies are beyond

Figure 1. AMR graph for “The boy wants the
girl to believe in herself and this is what the
girl wants, too.”

the scope of this paper, but visualizations of parser ex-
ecutions must make them explicit to the user.

In order to describe our visualization approach we apply
the VGLR parser to the graph language of abstract meaning
representations (AMR). AMRs have been proposed as a se-
mantic representation of English sentences. Each AMR is a
directed graph with labelled nodes and edges, which repre-
sent concepts and their relations, respectively. For instance,
the semantics of the sentence “The boy wants the girl to be-
lieve in herself and this is what the girl wants, too”, taken
from [11], can be represented by the AMR shown in Fig. 1.
A description of AMRs is beyond the scope of this paper;
details can be found in [1, 20], and a corpus of AMRs is
described in [3].

3. Use Cases

The authors have realized several visual parsers and vi-
sual parser generator [7, 8, 9, 13, 24]. Developing VGLR
parsers is challenging because one has to coordinate sev-
eral non-trivial data structures like the input, the GSS, and
the parse forest. It turned out that it is almost impossible
to develop such parsers without proper visualization of all
these data structures. In the following, we briefly describe
the primary uses cases of visualization tools when develop-
ing VGLR parsers. We then elaborate on the requirements
derived from these use cases in Section 4.

The main use case is inspecting the different data struc-
tures after a parsing error occurred. The error can either be
due to an invalid input (syntax error) or to an error in the
parser code or both. Only by inspecting the input, the GSS,
and the parser forest at the time of the error and running
the last steps that led to the error can help the parser im-
plementor to detect the possible causes. Since the number
of nodes in the GSS and the parse forest can be very high
(sometimes more than 100) and many concurrent stack tops
and tree roots may be present, it would be almost impossible
to accomplish the task without proper visualization. Even
though the number of nodes may make the data structure
visualizations difficult to read, running back and forth the
last actions preceding the error can help the implementor

to individuate and zoom on specific nodes of the structures
being modified.

Visualizing the input and those input tokens that have al-
ready been inspected by the parser is another use case. In
contrast to textual input, visual input has in general no self-
evident ordering of input tokens. The parser has, rather, to
identify a correct parsing sequence, and it turned out that vi-
sualizing this information makes debugging VGLR parsers
a lot easier.

Yet another use case is for the parser user to see all the
possible syntactic interpretations of its input by looking at
the parse forest visualization. Each of the contained parse
trees corresponds to individual stacks within the GSS and
possibly different parsing sequences through the input. It
turned out to be manageable for the implementor to com-
prehend the correspondence of all these data structures with
the help of proper visualizations.

4. Parser Visualization Requirements

The use cases outlined in the previous section allowed
to derive requirements on a parser visualizer (in the follow-
ing called just visualizer). It must essentially provide visual
representations of the parser’s data structures that change
over time during its execution. In order to allow the im-
plementor to analyze and validate these data structures, she
must be able to stop the execution, to continue it, to watch it
in single-step mode, to go backwards in time, i.e., to retrace
the parser’s steps, etc. In other words, the visualizer must
provide control over the parser execution quite similar to a
program debugger.

4.1. Granularity levels of execution control

A well known feature of program debuggers is that they
allow to run a program step by step on quite different lev-
els of granularity. At the lowest level, they allow one to
stop after each statement or instruction. On a higher level,
they can “step over” a procedure call, i.e., they stop auto-
matically when the procedure call terminates. The user can
choose the appropriate level of granularity freely. Similarly,
a parser execution visualizer should be able to show parser
executions at different levels of granularity and to allow one
to easily pass from one level to the other. Furthermore, in
order to better fit the mental model that a parser/language
implementor has of the parser execution, each level should
be programmable, in the sense that she should be allowed to
define the operations included in a level. In the following,
we use the action and step granularity levels.

In general, the action level visualizes the results of the
execution of each parser action. As mentioned above, to
better represent the user needs, a parser action may be split
in more refined actions: as an example, the reduce action

of a bottom-up parser may be split in “deletion” of the re-
duced path and “addition” of the new goto state. This gives
a better understanding on how the reduction process is per-
formed and on which states. As a further example, not rep-
resented here, in the case of visual parsers that use relations
to navigate the input, the shift action may further be split
in “move the cursor” to point to the next input symbol and
“shift the pointed token”.

A step is usually the highest granularity level and it
can vary depending on the particular strategy of execution
adopted by the parser being implemented. It is usually used
to synchronize the actions of the parser. As an example, in
Tomita’s parser the execution is synchronized by the input
tokens. As a consequence, each step includes either all the
shift actions to visit a new input token or all the possible re-
ductions that can be applied on a token. In our case, a step
includes the actions to be executed on a particular top state.

4.2. Execution control

A program debugger lets the user control the execution
by showing her the program source code in which she can
set breakpoints and in which the line of code is highlighted
where the program has been stopped. The visualizer should
offer a similar view that shows the sequence of parser oper-
ations on the selected level of granularity. Fig. 2 shows an
example used in our prototype visualizing the execution of
the AMR graph parser analyzing the graph shown in Fig. 1.
The lines in bold-face are steps where the parser operates on
a specific node of the GSS, which corresponds to a state, be-
fore it continues working on the next node of the GSS. The
sequence of actions composing a step are shown in normal
font below a bold-face step. The action where the parser
execution has been stopped is highlighted in red. Here it is
a reduce action that pops five states off the stack, starting
at the current state 5135 : gag(q,w1,b) and which will then
perform a goto to state s139 : gjo(w;). Again, details of the
parser and its states are beyond the scope of the paper. Note
that the action that follows below the highlighted line will
then remove the states that have been popped off.

Note also that such a view is in fact different from the
program source code of a program debugger in the sense
that it does not show the parser program, but rather a trace
of the parser execution on a specific level of granularity. In
fact, it must be an a posteriori trace taken from a previous
parser execution. Otherwise, the view could not show the
steps and actions following the one where the execution has
been stopped. We require (see Sect. 5) that the parser stores
the trace in a log file, which is read later by the visualizer,
a technique which is also well-known from the analysis of
parallel programs [21].

The user of the visualizer must be able to run the parser,
or rather retrace its steps from the log. She must be able to

00 Parser Execution Visualizer
File Edit

Graph: amr_fig2

Parser: parser.amr.AMR_Parser

Parsing succeeded: yes

Created: Mon Apr 29 16:01:06 CEST 2019

Step - Action - Action + Step + Play

Uelete state SLZ5 ana L/ pParse Torest noaes
Step 129, state s129: q48(b1, w2, b)
reduce rule iii3b1 (pop 5), goto state s136: q10(w2)
delete states s49, s37, 525, 519, s129
Step 130, state s130: q10(w2)
reduce rule ii2 (pop 2), goto state s137: q36(g, b, wl)
delete states s90, s130
Step 131, state s131: q10(w1l)
reduce rule ii2 (pop 2), goto state s138: q36(b1, b, w2)
delete states s131, s91
Step 132, state s132: q48(g, wl, b)
reduce rule iii3b1 (pop 5), goto state s139: q10(w1)
delete states s21, s132, s52, s42, s27
Step 133, state s133: q4(g)
delete state s133 and 17 parse forest nodes
Step 134, state s134: q33(b, w2, b1)
reduce rule iil (pop 0), goto state s140: q44(b, w2, bl)
Step 135, state s135: q22(g, b, wl)

reduce rule iil (pop 0), goto state s141: q36(g, b, wl)
Ctan 12A ctata c12A: al0Oa2)

Position:

step 132 of 157, action 1 of 2

Figure 2. Execution control of the parser exe-
cution visualizer prototype.

execute the parser actions step by step on different granu-
larity levels, and must be able to go back and forth in time,
realized by buttons in Fig. 2. Pushing it shall start a con-
tinuous animation visualizing the progress of the parser in
the data views discussed in the next section. Furthermore,
clicking on an action in the trace should fast-forward (or
fast-backward, resp.) the visualization to this action. !

4.3. Data views

In order to allow the user to understand what is going on
in a parser execution, different aspects of the parser must
be visualized. Apparently, its main data structures must be
shown in a way that match the user’s mental model. For
our running example using a VGLR parser, the visualizer
must at least show the current GSS, the parse forest, and
the parser input, as discussed in the following. These data
structures are connected. For instance, leaves of the parse
forest correspond to visual tokens of the parser input, and
each edge in the GSS refers to a parse forest node. Visu-

ITwo screencasts that demonstrate the user interactions with the proto-
type can be seen at [37].

Figure 3. Different data views. Arrows indi-
cate visual feedback triggered by user inter-
action described in the text.

[JoN] Input Graph
File Edit Grouping

CB®O® T [~ 2 = [A B

,xQD

[XN] Input Graph
File Edit Grouping

o®e@ ala DB

Flowcharts [

Figure 4. Input view of an AMR graph and a
flowchart.

alizing all these aspects and their interconnections in a sin-
gle view would produce just clutter. Instead, we suggest
to provide separate views and to visualize interconnections
between them by means of user interaction and visual feed-

back [30]. Fig. 3 symbolizes the three views that the visu-
alizer at least should provide; arrows represent user inter-
actions in one view and the corresponding visual feedback
in a different or the same view. Arrow 7, for instance, in-
cludes highlighting a visual token in the input view when
the corresponding parse forest leaf is clicked.

In the following, we first describe the requirements on
the three different data views and afterwards their intercon-
nection by means of visual feedback triggered by user inter-
action.

4.3.1. Input view

The parser must appropriately choose in which sequence
it reads the visual tokens of the input, and it may be forced
to choose different reading sequences in the same execution
if the input is ambiguous, e.g., the AMR graph shown in
Fig. 1. The visualizer, therefore, must provide an input view
that shows the parser input and indicates which of its visual
tokens have already been read in the current state of the
execution, and which have not been read yet.

Visualizing the parser input is more complicated than
showing the input of a string parser: Whereas a string can
be simply shown as text, there is no uniform representation
for all visual languages that can be analyzed by a visual
parser. The input view, therefore, must be highly customiz-
able, its visual representation should match the representa-
tion of the visual language. Fig. 4 shows two screenshots
of our prototype. The upper screenshot depicts the AMR
graph of Fig. 1, the lower one a flowchart in the process of
being parsed. Visual tokens that have already been read by
the parser are highlighted in red. More details are described
below.

Of course, different parsers are used to analyze AMR
graphs and flowcharts, but they use a common input format
with less information than the concrete diagram. In general,
the input format may in fact be just a kind of graph (as in
our case), which does not contain any information on the
layout of its visual tokens. The input view, therefore, must
be customizable in the way how elements of the common
input format shall be represented. Furthermore, it shall of-
fer some automatic and manual layout functionality like in
standard visual editors, but without the ability to modify the
parser input semantically. Our prototype allows to switch
between different customizations using the combo box in
the window toolbar.

4.3.2. GSS view

The visualizer must show the main data structure of
the parser. For Earley-parser or a Cocke-Younger-Kasami-
based parser, it would be a table used for dynamic program-
ming. In our VGLR example, however, this is the GSS,
which shall be shown as a plain DAG as in Fig. 5.

Fit graph | Relayout

s134: q33(b,w2,b1)

s126: q19(b,w2,b1)

s110: q12(b,w2,b1)

s102: q8(b1,w2)

s94: q6(w2)

s78: q22(g,b,wl)

s70: q18(g,b,wl)

« show params

s135: q22(g,b,wl)

s127: q18(g,b,wl)

s119: q9(g,wl)

s111: g6(wl)

s95: q33(b,w2,b1)

s87: q19(b,w2,b1)

s71: q12(b,w2,b1)

s137: q36(g,b,wl) s138: q36(b1,b,w2)

s74: q22(g,b,wl) s75: q22(b1,b,w2)

s66: q18(g,b,wl) s67: q18(b1,b,w2)

R,D
s62: q9(g,wl) s63: q8(b1,w2) s132: q48(g,wl,b) s58: q9(g,wl) s59: q9(b1,w2)
s54: q6(wl) s55: g6(w2) s52: q35(g,wl,b) s50: q6(wl) s51: g6w2)
s35: q24(g,b) s42: q21(g,wl,b) $32: q24(g,b)
s29: q13(g,b) s27: ql7(g,wl,b) s26: q13(g,b)
s23: q9(g,b) s21: q9(g,wl) s136: q10(w2) s20: q8(g,b)
s17: q6(b) s15: q6(wl) s133: q4(g) s13: q6(w2) s14: q6(b)
& J
YV f
s5:q3(g) s4: q3(bl)
J
\]
sl: q0

Figure 5. GSS view corresponding to Fig. 2.

The GSS changes with the parser execution, i.e., GSS
nodes and edges are added and deleted. Moreover, GSSs
can grow rather big as Fig. 5 shows, which can make it
difficult for the user to follow these modifications. The
GSS view shall provide some general features that allow
the user to easily recognize any modification. First, the
layout of the modified GSS should be computed from the
old one incrementally in order to preserve the user’s mental
map [27]. Second, changes to the layout should not happen
abruptly. Instead, they should be visualized in an animated
way so that the user has time to see the changes happen.
And finally, the view shall indicate the GSS node (“working
node”) that is currently processed by the parser, i.e., where
changes happen, shown in orange in Fig. 5. Note that this
GSS node is the same as the one indicated in the trace view
of execution control (Fig. 2).

Moreover, the GSS view should also add further infor-
mation about the current working node, which informs the
user about the changes that will happen to this node. Pos-
sible changes are triggered by the actions within the step
processing this node, i.e., shift, reduce, accept, and delete
as described before. The initial letters of these actions are
used here to mark the working node, here R and D, which
corresponds to the actions of step 132 as shown in the log
view (Fig. 2).

The highlighted edge in Fig. 5 is a visual feedback after

selecting a parse forest node described in Sec. 4.3.4.
4.3.3. Parse forest view

The parse forest represents the syntactic structure of the
parse input processed so far during the parser execution. It
is the final parse forest, i.e., a packed form of the set of all
parse trees of the input, if the parser terminates successfully,
and it is empty if the parser fails. The parse forest is usually
a DAG if sub-trees are shared in order to save space. And
in general, it consists of several unconnected components
as long as the input has not been analyzed completely yet.
In fact, each edge of the GSS refers to a unique parse forest
node. This interconnection of GSS and parse forest shall be
communicated to the user by means of user interaction and
visual feedback described in the next section.

Fig. 6 shows a part (note the scrollbar at the bottom) of
the parse forest in the execution state shown in Fig. 2. Ter-
minal parse forest nodes are drawn in yellow, nonterminal
ones in green. Note also the nodes b, g, and b1 drawn in
faded red; they are so-called contextual nodes which are a
specific feature of contextual hyperedge replacement gram-
mars used in our example (see Sec. 2 and [11]). Their in-
coming and outgoing arrows represent where these nodes
have been created and where they are used as contextual
nodes in the parse forest. Again, details are beyond the
scope of this paper.

[] [] Parse Forest

[Fit graph | Relayout | € show edges

arg0(wl,g) Verb(wl) argliwl,b) BoyGirl(g) argl(w2,b) Mib) Verb(w2) arg0(b,g) arg0(b,g) argh(wz,
Verbw2), want(wl) girlig) want{w2)
NQ
Verbiwl) i N1(w2) Verb(w2)
- 3 T
| e .
Iwant(wl)l NQ i bl M(w2) NO arg0(w2,b1) argl(w2,b) BoyGirl(b1) wantiw2)
L i,
(J }' Vv ¥
Verb(w2) N1w2) N1(w2) boy(b1)
‘(J T J T 1
want(w2) NO argl(w2,bl) M(w2) argl(w2,b) argl(w2,b1l) NO Verb(b) Miw2) argl(w2,b)
. . J
VoY ™)
N1(wl) i Verb(wl) believe(b)
J l 'LL
I — |
NO g argl(wl,b) M(w1) Mﬁ'm' argdwl,g) | wantiwl) Jm:)
.................. VY l
girl(g) N1(wl) Verb(w1)
1
é é M(w1) argo(wl,g) NO argliwl,b) want(wl)

Figure 6. Parse forest created by the VGLR parser corresponding to Fig. 2.

Like the GSS, the parse forest changes with the parser
execution. New parse forest nodes are added when edges
are added to the GSS, possibly adding edges to child nodes
in the parse forest (see the screencasts at [37]), and entire
subgraphs of the parse forest may be deleted when a parse
fails. The latter does not necessarily mean that the whole
parser execution fails; it may be just one dead end in the
search carried out by the parser. Like the GSS view and
in order to prevent user confusion, the parse forest view
must provide an automatic layout that allows to preserve
the user’s mental map.

Fig. 7 shows the complete parse forest after the parser
eventually accepted the AMR graph of Fig. 1. It represents
in fact two parse trees and uses local ambiguity packing (see
Sec. 2) in order to save space: two different nonterminals
N (b) with different sub-DAGs are contained within a gray
node, whose parent nonterminal N(b) can select either of
the two nodes N (b) as a child, resulting in two different
parse trees. One parse tree corresponds to the sentence “The
boy wants the girl to believe in herself and this is what the
girl wants, too”, the other to the semantically equivalent
“The girl wants to believe in herself, and the boy wants the
girl to believe in herself, too.”

The nodes and edges of the parse forests of Figures 6
and 7 highlighted in red are visual feedbacks after selecting
the top-most highlighted node N() and N, (b), respectively,
and is described in the next section.

4.3.4. User interaction and visual feedback

We are now going to describe the visual feedback trig-
gered by selecting components in one of the views. The
numbers of the following items correspond to the numbers
used in Fig. 3.

® Whenever a GSS node becomes the current working
node or if the user selects a GSS node in the GSS view,
all visual tokens that have already been read in this
parser state shall be highlighted. The nodes and edges
of the AMR graph in Fig. 4 drawn in red have been
read in the current state s13; : g43(g, w1,b) in Fig. 5.

@ When the user selects a visual token in the input view,
all GSS nodes that have already read this token shall
be highlighted in the GSS view.

® Each edge of the GSS refers to a top-most node of the
parse forest. If the user selects an edge in the GSS
view, this node and its complete sub-DAG shall be
highlighted in the parse forest view.

@ is in fact the opposite of @: When a user selects a top-
most node in the parse forest node, the edge of the GSS
that refers to this parse forest node is selected in the
GSS view. The edge in Fig. 5 highlighted in red is in
fact the visual feedback for the selection of the top-
most node N() in the parse forest view (Fig. 6).

[XoN
H Fit graph | Relayout oshuw edges

Parse Forest

¥
BoyGirl(g)
Verb(b) girlg)
believe(b)
Lw2) Verb(wl)
¥
irl(b1)] fargiwz,b)) fargowz,b1)) argl(wl,h) arg0(wl,aq) N M(w1) want(w1)
1.
J
e
Vv
(bovib1) NL(w2) N1(wL) Verb(w2)
JIE
{7 Yy 1
M(w2) N arg0(w2,bl) want(w2)

argliw2,b) BoyGirl(b1)
v

boy(b1)

Figure 7. Final parse forest of the AMR graph shown in Fig. 1.

® And whenever a node is selected in the parse forest
node, all nodes and edges of its entire sub-DAG are
highlighted, too. That is the reason for the other high-
lighted nodes and edges in Figures 6 and 7 selecting
N() or Ny (b), respectively. This does in fact not vi-
sualize a connection between different data-views, but
allows the user to recognize more easily which nodes
of a parse forest belong to a sub-DAG. Otherwise, it
would be rather tedious to see which parse forest nodes
belong to either of the two nodes Nj (b) within the gray
packed node in Fig. 7.

® When the user selects a visual token in the input view,
the corresponding terminal parse forest nodes shall be
highlighted in the parse forest view. Note that, accord-
ing to @, selecting a visual token also highlights all
GSS nodes that have read the visual token.

@ When a parse forest node is selected, which highlights
its entire sub-DAG according to ®, all visual tokens
that correspond to terminal parse forest nodes in this
sub-DAG shall be highlighted in the input view.

5. Parser Visualization Architecture

Fig. 8 shows the proposed architecture of the parser
execution visualizer as it has also been realized in our
prototype. Orange rectangles, yellow rounded rectangles,
and green parallelograms represent data, processes, and Ul
components, respectively, arrows represent data flow.

We suggest that the visualizer does not visualize the
parser during its execution. We rather suggest that the
parser is instrumented so that it writes a trace of its actions
into a log file, which is read later by the visualizer. This
approach allows the visualizer to easily go back and forth
in time. Moreover, the same parser execution can be visual-
ized arbitrarily often, even if the parser runs nondetermin-
istically [21]. We also assume that the log file contains the
encoded parser input so that it can be visualized in the input
view.

The Log Reader reads the file and internally stores the
parse trace which consists of the parser input and the se-
quence of parser events, e.g., actions like shift and reduce.
They are shown to the user in the input view (see Fig. 4) and
the log view (see Fig. 2), respectively.

The execution control process reads the parse events for-
ward and backward, controlled by the execution control
user interface (see Fig. 2). This process keeps track of the
current event, which is also highlighted in the log view. And
if the user selects an action in the log view, execution con-
trol fast-forwards to the corresponding parser state. It main-
tains the parser state by means of the parser data structures
based on the parsed events that have happened since the be-
ginning of the parse trace. There are no uniform parser data
structures, they rather depend on the specific parser type. In
our example, they consist of the GSS and the parse forest.
These data structures are visualized in the corresponding
data structure views (here GSS view, Fig. 5, and parse for-
est view, Figs. 6 and 7) using some layouting facility. The
user interaction & feedback handler reacts to pointing and

Log File

Parser Execution Visualizer

Parse Trace

v i
I
Log o
i A
| | Parse Events l——)/ Log View /
i A A

A

Y

Execution Execution
Control Control
ul Process
b v

Parser User Interaction &
Data Structures Feedback Handler

':\/0%‘_7/ Data Structure Views /

Figure 8. Parser execution visualizer architec-
ture.

clicking in the different views and triggers visual feedback
as described in Sec. 4.3.4.

6. Related Work

Data structure and algorithm visualizations have been
studied for more than 35 years [31, 4, 17], and now many
web resources exist implementing visualizations and an-
imations of almost all the most common data structures
and algorithms based on them, respectively [34, 35, 36].
However, lately, the research in this field has shrunk con-
siderably. Most of the important papers are in the range
from 1980 to 2000 and the applications have been basically
two: visual debugging [25] and teaching and learning [29].
Among the still currently developed tools is JSAV [17], a
JavaScript algorithm visualization library that is meant to
support the development of general algorithm visualizations
for online learning material.

Parser visualization tools either visualize the process of
generating a parser from a grammar like LLparse and LR-
parse [2]. Or they visualize parser execution like PAT [12,
15] which has been used for the visualization and statisti-
cal comparison of various GLR parsers. Among other tools
we can cite [16] for visualizing lexical generation processes
and [19] that is an educational tool for visualizing compil-
ing techniques based on deterministic parsers.

Our prototypes also visualize parser execution and,

hence, are most closely related to the latter category. How-
ever, we are not aware of any tool that also allows to visu-
alize the execution of visual parsers.

7. Conclusions

In this paper we have illustrated the requirements and
the architecture of a parser visualizer system while using
an example from the field of Natural Language Process-
ing. In particular, we have discussed several visualization
techniques that have proven useful in practice and then gen-
eralized the results by elicitation of visualization require-
ments that parser visualization tools should fulfill in order
to effectively and efficiently support the realization of visual
parsers.

A system based on the proposed specification is able to
support a VGLR parser/language implementor at various
levels of granularity and, as a side effect, it may also be
used to help teachers to visualize the bottom-up parsing of
a specific input when applied to simple grammars.

Two instances of the prototypical parser visualizer based
on different VGLR parsing approaches exist following the
guidelines and architecture presented in this paper. Even
though the two instances have been specialized to the spe-
cific approach the needs to gain the maximum insight in the
parser execution behavior resulted to be the same.> Because
of the problem complexity, the use of a parser visualizer
gave a huge contribution to the development of each phase
of the two VGLRs: automatic generation of the VGLR
parser from a grammar specification, execution of the gen-
erated parser and parsing of several languages including the
example shown here. Another outcome of our parser visu-
alizer architecture is that it allows for the visual compari-
son of the execution of different parsers obtained either by
modified versions of the same approach or by different ap-
proaches, for the analysis of their differences and/or simi-
larities at different level of granularity and for the discovery
of specific parser behaviors.

References

[1] L. Banarescu, C. Bonial, S. Cai, M. Georgescu, K. Grif-
fitt, U. Hermjakob, K. Knight, P. Koehn, M. Palmer, and
N. Schneider. Abstract meaning representation for sembank-
ing. In Proc. 7th Linguistic Annotation Workshop and Inter-
operability with Discourse, pages 178—186, Sofia, Bulgaria,
Aug. 2013. Assoc. for Computational Linguistics.

[2] S. A. Blythe, M. C. James, and S. H. Rodger. Llparse and
Irparse: Visual and interactive tools for parsing. SIGCSE
Bull., 26(1):208-212, Mar. 1994.

2For completeness, some screenshots of the other instance not de-
scribed here can be found at [37].

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

(11]

[12]

[13]

(14]

[15]

[16]

[17]

F. Braune, D. Bauer, and K. Knight. Mapping between
English strings and reentrant semantic graphs. In Proc. of
the Ninth Int. Conf. on Language Resources and Evalua-
tion (LREC’14), pages 4493-4498, Reykjavik, Iceland, May
2014. European Language Resources Association (ELRA).
M. H. Brown and R. Sedgewick. Techniques for algorithm
animation. IEEE Software, 2(01):28-39, Jan. 1985.

G. Costagliola, M. De Rosa, V. Fuccella, and S. Perna. Vi-
sual languages: A graphical review. Information Visualiza-
tion, 17(4):335-350, 2018.

G. Costagliola, M. De Rosa, and M. Minas. Visual parsing
and parser visualization. In 2019 IEEE Symposium on Vi-
sual Languages and Human-Centric Computing (VL/HCC),
pages 243 —247. IEEE Computer Society, Oct 2019.

G. Costagliola, V. Deufemia, and G. Polese. A framework
for modeling and implementing visual notations with appli-
cations to software engineering. ACM Trans. Softw. Eng.
Methodol., 13(4):431-487, Oct. 2004.

G. Costagliola, V. Deufemia, G. Polese, and M. Risi. Build-
ing syntax-aware editors for visual languages. J. Visual
Lang. Comput., 16(6):508 — 540, 2005. Selected papers from
Visual Languages and Formal Methods 2004 (VLFM °04).
F. Drewes, B. Hoffmann, and M. Minas. Extending pre-
dictive shift-reduce parsing to contextual hyperedge replace-
ment grammars. In E. Guerra and F. Orejas, editors, Graph
Transformation: 12th Int. Conf., ICGT 2019, Held as Part
of STAF 2019, Proc., volume 11629 of LNCS, 2019.

F. Drewes, B. Hoffmann, and M. Minas. Formalization
and correctness of predictive shift-reduce parsers for graph
grammars based on hyperedge replacement. J. Log. Algebr:
Methods, 104:303-341, April 2019. Preprint available at
arXiv:1812.11927 [cs.FL].

F. Drewes and A. Jonsson. Contextual hyperedge replace-
ment grammars for abstract meaning representations. In
13th Intl. Workshop on Tree-Adjoining Grammar and Re-
lated Formalisms (TAG+13), pages 102-111, 2017.

G. R. Economopoulos. Generalized LR parsing algorithms.
PhD thesis, Royal Holloway, Univ. of London, UK, 2006.
B. Hoffmann and M. Minas. Generalized predictive shift-
reduce parsing for hyperedge replacement graph grammars.
In C. Martin-Vide, A. Okhotin, and D. Shapira, editors,
Language and Automata Theory and Applications, 13th Int.
Conf., LATA 2019, Proc., volume 11417 of LNCS, pages
233-245, 2019.

S. C. Johnson et al. Yacc: Yet another compiler-compiler,
volume 32. Bell Laboratories Murray Hill, NJ, 1975.

A. Johnstone, E. Scott, and G. Economopoulos. The gram-
mar tool box: A case study comparing GLR parsing algo-
rithms. Electronic Notes in Theoretical Computer Science,
110:97-113, 12 2004.

A. Jorgensen, G. R. Economopoulos, and B. Fischer. VLex:
visualizing a lexical analyzer generator - tool demonstration.
In Language Descriptions, Tools and Applications, LDTA
2011. Proc., page 12, 2011.

V. Karavirta and C. A. Shaffer. JSAV: The JavaScript algo-
rithm visualization library. In Proc. of the 18th ACM Conf.
on Innovation and Technology in Computer Science Educa-
tion, ITiCSE 13, page 159-164, 2013.

(18]

[19]

(20]

(21]

(22]

(23]

[24]

[25]

[26]

(27]

(28]

[29]

(30]

(31]

(32]
(33]
[34]
(35]
(36]

(37]

D. E. Knuth. On the translation of languages from left to

right. Information and Control, 8(6):607 — 639, 1965.

N. Krebs and L. Schmitz. Jaccie: a Java-based compiler-
compiler for generating, visualizing and debugging compiler
components. Sci. Comput. Program., 79:101-115, 2014.

I. Langkilde and K. Knight. Generation that exploits corpus-
based statistical knowledge. In Proc. 36th Annual Meeting
of the Association for Computational Linguistics and 17th
Int. Conf. on Computational Linguistics, Volume 1, pages

704-710. Assoc. for Computational Linguistics, Aug. 1998.
T. J. J. LeBlanc and J. M. Mellor-Crummey. Debugging
parallel programs with instant replay. IEEE Trans. Comput.,
36(4):471-482, Apr. 1987.

K. Marriott and B. Meyer, editors. Visual Language Theory.
Springer-Verlag New York, Inc., New York, NY, USA, 1998.
S. McPeak and G. C. Necula. Elkhound: A fast, practi-
cal GLR parser generator. In E. Duesterwald, editor, Com-
piler Construction, pages 73-88. Springer Berlin Heidel-
berg, 2004.

M. Minas. Speeding up Generalized PSR parsers by memo-
ization techniques. In R. Echahed and D. Plump, editors,
Proc. 10th Int. Workshop on Graph Computation Models
(GCM 2019), volume 309 of Electronic Proceedings in The-
oretical Computer Science, pages 71-86, 2019.

S. Mukherjea and J. T. Stasko. Toward visual debug-
ging: Integrating algorithm animation capabilities within a
source level debugger. ACM Trans. Comput.-Hum. Interact.,
1:215-244, 1994.

T. J. Parr and R. W. Quong. ANTLR: A predicated-
LL(k) parser generator. Software: Practice and Experience,
25(7):789-810, 1995.

H. C. Purchase and A. Samra. Extremes are better: In-
vestigating mental map preservation in dynamic graphs. In
G. Stapleton, J. Howse, and J. Lee, editors, Diagrammatic
Representation and Inference, volume 5223 of LNCS, pages
60-73, Berlin, Heidelberg, 2008.

E. Scott and A. Johnstone. Right nulled GLR parsers. ACM
Trans. Program. Lang. Syst., 28:577-618, 07 2006.

C. A. Shaffer, M. L. Cooper, A. J. D. Alon, M. Akbar,
M. Stewart, S. Ponce, and S. H. Edwards. Algorithm vi-
sualization: The state of the field. Trans. Comput. Educ.,
10(3):9:1-9:22, Aug. 2010.

B. Shneiderman, C. Plaisant, M. Cohen, S. Jacobs,
N. Elmgqyvist, and N. Diakopoulos. Designing the User Inter-
face: Strategies for Effective Human-Computer Interaction.
Pearson, 6th edition, 2016.

J. T. Stasko. Simplifying algorithm animation with Tango.
In Proceedings of the 1990 IEEE Workshop on Visual Lan-
guages, pages 1-6, Oct 1990.

M. Tomita, editor. Generalized LR Parsing, volume 1.
Springer US, 1991.

D. H. Younger. Recognition and parsing of context-free lan-
guages in time n3. Information and Control, 10(2):189 —
208, 1967.

http://www.algomation.com.
https://visualgo.net.
https://www.cs.usfca.edu/~galles/
visualization/.
http://cluelab.di.unisa.it/parser_
execution_visualizer/.

https://arxiv.org/abs/1812.11927
http://www.algomation.com
https://visualgo.net
https://www.cs.usfca.edu/~galles/visualization/
https://www.cs.usfca.edu/~galles/visualization/
http://cluelab.di.unisa.it/parser_execution_visualizer/
http://cluelab.di.unisa.it/parser_execution_visualizer/

	. Introduction
	. The application example: VGLR parsing and NLP
	. Use Cases
	. Parser Visualization Requirements
	. Granularity levels of execution control
	. Execution control
	. Data views
	. Input view
	. GSS view
	. Parse forest view
	. User interaction and visual feedback

	. Parser Visualization Architecture
	. Related Work
	. Conclusions

