Nothing Special   »   [go: up one dir, main page]

J. For. Sci., 2016, 62(4):163-174

Quality of organic and upper mineral horizons of mature mountain beech stands with respect to herb layer speciesOriginal Paper

O. Špulák, J. Souček, D. Dušek
Forestry and Game Management Research Institute, Jíloviště-Strnady, Opočno Research Station, Opočno, Czech Republic

The study analyses the chemical properties of the soil in open-canopy beech stands in relation to the predominant species of ground vegetation. A hypothesis is examined whether the predominant ground vegetation species can represent in chemical terms different site conditions. Four localities were used for testing reed grass, myrtle blueberry, wavy hair grass and vegetation-free patches. Samples were taken from three organic horizons (litter (OL), fragmented (OF) and humus (OH)) and from the humic first mineral horizon. Significant differences between the variants were found only in the OL horizon, in which the vegetation species explained 65% of the variability in data. The OL horizon in the vegetation-free variant showed the significantly lowest pH/KCl and the lowest potassium content. The most distinct particular differences were observed between the blueberry variant and the grass variants. Although the studied variants of vegetation growing under the beech stand represented significant differences in the litter horizon chemistry, the effects on the other humus horizons and on the upper mineral horizon were marginal.

Keywords: forest floor; top soil layers; soil chemical characteristics; Calamagrostis villosa; Vaccinium myrtillus; Avenella flexuosa

Published: April 30, 2016  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Špulák O, Souček J, Dušek D. Quality of organic and upper mineral horizons of mature mountain beech stands with respect to herb layer species. J. For. Sci.. 2016;62(4):163-174.
Download citation

References

  1. Aerts R., Chapin F.S. (1999): The mineral nutrition of wild plants revisited: A re-evaluation of processes and patterns. Advances in Ecological Research, 30: 1-67. Go to original source...
  2. Andreasson F., Pahlsson A.B., Bergkvist B. (2012): Differences in soil organic matter, extractable nutrients, and acidity in European beech (Fagus sylvatica L.) forest soils related to the presence of ground flora. Journal of Forest Research, 17: 333-342. Go to original source...
  3. Augusto L., Dupouey J., Ranger J. (2003): Effects of tree species on understory vegetation and environmental conditions in temperate forests. Annals of Forest Science, 60: 823-831. Go to original source...
  4. Barbier S., Gosselin F., Balandier P. (2008): Influence of tree species on understory vegetation diversity and mechanisms involved - A critical review for temperate and boreal forests. Forest Ecology and Management, 254: 1-15. Go to original source...
  5. Bonifacio E., Santoni S., Cudlin P., Zanini E. (2008): Effect of dominant ground vegetation on soil organic matter quality in a declining mountain spruce forest in central Europe. Boreal Environment Research, 13: 113-120.
  6. Borůvka L., Podrázský V., Mládková L., Kuneš I., Drábek O. (2005): Some approaches to the research of forest soils affected by acidification in the Czech Republic. Soil Science and Plant Nutrition, 51: 745-749. Go to original source...
  7. Brimhall G.H., Chadwick O.A., Lewis C.J., Compston W., Williams I.S., Danti K.J., Dietrich W.E., Power M.E., Hendricks D., Bratt J. (1992): Deformational mass transport and invasive processes in soil evolution. Science, 255: 695-702. Go to original source... Go to PubMed...
  8. Bruelheide H., Udelhoven P. (2005): Correspondence of the fine-scale spatial variation in soil chemistry and the herb layer vegetation in beech forests. Forest Ecology and Management, 210: 205-223. Go to original source...
  9. Ciavatta C., Vittori Antisari L., Sequi P. (1989): Determination of organic carbon in soils and fertilizers. Communications in Soil Science and Plant Analysis, 20: 759-773. Go to original source...
  10. Ellenberg H., Weber H.E., Düll R., Wirth V., Werner W., Paulissen D. (1992): Zeigerwerte von Pflanzen in Mitteleuropa. 2nd Ed. Göttingen, Goltze: 258.
  11. Fiala K., Tůma I., Holub P., Jandák J. (2005): The role of Calamagrostis communities in preventing soil acidification and base cation losses in a deforested mountain area affected by acid deposition. Plant and Soil, 268: 35-49. Go to original source...
  12. Finney J.D. (1988): Was this in your statistics textbook? III. Design and analysis. Experimental Agriculture, 24: 421-432. Go to original source...
  13. Hagen-Thorn A., Callesen I., Armolaitis K., Nihlgard B. (2004): The impact of six European tree species on the chemistry of mineral topsoil in forest plantations on former agricultural land. Forest Ecology and Management, 195: 373-384. Go to original source...
  14. Ingestad T. (1979): Mineral nutrient requirements of Pinus silvestris and Picea abies seedlings. Physiologia Plantarum, 45: 373-380. Go to original source...
  15. IUSS Working Group WRB (2015): World Reference Base for Soil Resources 2014, update 2015. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps. World Soil Resources Reports No. 106. Rome, FAO: 192.
  16. Janssens I.A., Dieleman W., Luyssaert S., Subke J.A., Reichstein M., Ceulemans R., Ciais P., Dolman A.J., Grace J., Matteucci G., Papale D., Piao S.L., Schulze E.D., Tang J., Law B.E. (2010): Reduction of forest soil respiration in response to nitrogen deposition. Nature Geoscience, 3: 315-322. Go to original source...
  17. Jones D.L., Brassington D.S. (1998): Sorption of organic acids in acid soils and its implications in the rhizosphere. European Journal of Soil Science, 49: 447-455. Go to original source...
  18. Kacálek D., Dušek D., Novák J., Bartoš J. (2013): The impact of juvenile tree species canopy on properties of new forest floor. Journal of Forest Science, 59: 230-237. Go to original source...
  19. Kappen H (1929): Die Bodenazidität. Berlin, Springer: 363. Go to original source...
  20. Kirk P.L. (1950): Kjeldahl method for total nitrogen. Analytical Chemistry, 22: 354-358. Go to original source...
  21. Klimo E., Materna J., Lochman V., Kulhavý J. (2006): Forest soil acidification in the Czech Republic. Journal of Forest Science, 52 (Special Issue): 14-22. Go to original source...
  22. Klinka K., Fons J., Krestov P. (1997): Towards a taxonomic classification of humus forms; third approximation. Scientia Silvica Extension Series, 9: 1-4.
  23. Konopatzky A. (1995): Untersuchungen zum langjährigen Oberbodenzustandswandel in den Waldökosystemen der Dübener Heide. In: Hüttl R.F., Bellmann K. (eds): Atmosphärensanierung und Waldökosysteme. Taunusstein, Blottner Verlag: 210-226.
  24. Kopp D. (1987): Forest dynamics and regeneration mosaic shifts in unexploited beech (Fagus sylvatica) stands of Fontainebleau (France). Forest Ecology and Management, 20: 135-150. Go to original source...
  25. Kopp D., Schwanecke W. (1994): Standörtlich-naturräumliche Grundlagen ökologiegerechter Forstwirtschaft: Grundzüge von Verfahren und Ergebnissen der forstlichen Standortserkundung in den fünf ostdeutschen Bundesländern. Berlin, Deutscher Landwirtschaftsverlag: 248.
  26. Kubát K., Hrouda L., Chrtek J., Kaplan Z., Kirchner J., Štěpánek J. (2002): Klíč ke květeně České republiky. Praha, Academia: 927.
  27. Kuklová M., Kukla J. (2008): Accumulation of macronutrients in soils and some herb species of spruce ecosystems. Cereal Research Communications, 36: 1319-1322.
  28. Levi-Minzi R., Saviozzi A., Cardelli R., Riffaldi R. (2000): The influence of beech and blueberry on soil surface horizons. Monti e Boschi, 51: 40-43.
  29. Madsen P., Larsen J.B. (1997): Natural regeneration of beech (Fagus sylvatica L.) with respect to canopy density, soil moisture and soil carbon content. Forest Ecology and Management, 97: 95-105. Go to original source...
  30. Martinák M., Ujházy K., Ujházyová M., Martináková M. (2014): Response of herb layer of fir-beech forests to tree species composition and stand structure change. Zprávy lesnického výzkumu, 59: 213-223.
  31. Mařan B., Káš V. (1948): Biologie lesa. První díl: Pedologie a mikrobiologie lesních půd. Praha, Melantrich: 596.
  32. Mataji A., Moarefvand P., Kafaki S.B., Kermanshahi M.M. (2010): Understory vegetation as environmental factors indicator in forest ecosystems. International Journal of Environmental Science and Technology, 7: 629-638. Go to original source...
  33. Mead R., Gilmour S.G., Mead A. (2012): Statistical Principles for the Design of Experiments: Applications to Real Experiments. Cambridge, Cambridge University Press: 586. Go to original source...
  34. Mládková L., Borůvka L., Drábek O. (2005): Soil properties and selected aluminium forms in acid forest soils as influenced by the type of stand factors. Soil Science and Plant Nutrition, 51: 741-744. Go to original source...
  35. Modrý M., Hubený D., Rejšek K. (2004): Differential response of naturally regenerated European shade tolerant tree species to soil type and light availability. Forest Ecology and Management, 188: 185-195. Go to original source...
  36. Montagne D., Cornu S., Le Forestier L., Cousin I. (2009): Soil drainage as an active agent of recent soil evolution: A review. Pedosphere, 19: 1-13. Go to original source...
  37. Moravec J. (1999): Bučiny a jedliny. In: Míchal I., Petříček V. (eds): Péče o chráněná území II. Lesní společenstva. Prague, Nature Conservation Agency of the Czech Republic: 421-534.
  38. Nelder J.A. (1971): Discussion on the papers by Wynn, Bloomfield, O'Neill and Wetherill. Journal of the Royal Statistical Society, Series B, 33: 244-246.
  39. Nelson D.W., Sommers L.E. (1996): Total carbon, organic carbon, and organic matter. In: Sparks D.L. (ed.): Methods of Soil Analysis. Part 3. Chemical Methods. Madison, Soil Science Society of America, American Society of Agronomy: 961-1010. Go to original source...
  40. Otto H.J. (1994): Waldökologie. Stuttgart, Ulmer: 391.
  41. Pérez-Bejarano A., Mataix-Solera J., Zornoza R., Guerrero C., Arcenegui V., Mataix-Beneyto J., Cano-Amat S. (2010): Influence of plant species on physical, chemical and biological soil properties in a Mediterranean forest soil. European Journal of Forest Research, 129: 15-24. Go to original source...
  42. Perry D.A., Oren R., Hart S.C. (1995): Forest Ecosystems. London, John Hopkins University Press: 632.
  43. Peřina V., Květ J. (1975): The effect of montane spruce thinning on the biomass production of the ground vegetation. Lesnictví, 21: 659-686.
  44. Plíva K., Žlábek I. (1986): Přírodní lesní oblasti ČR. Praha, SZN: 313.
  45. Prescott C.E., Zabek L.M., Staley C.L., Kabzems R. (2000): Decomposition of broadleaf and needle litter in forests of British Columbia: Influences of litter type, forest type, and litter mixtures. Canadian Journal of Forest Research, 30: 1742-1750. Go to original source...
  46. Průša E (2001): Pěstování lesů na typologických základech. Kostelec nad Černými lesy, Lesnická práce: 593.
  47. R Development Core Team (2015): R: A Language and Environment for Statistical Computing. Vienna, R Foundation for Statistical Computing. Available at http://www.rproject.org
  48. Ritter E., Vesterdal L., Gundersen P. (2003): Changes in soil properties after afforestation of former intensively managed soils with oak and Norway spruce. Plant and Soil, 249: 319-330. Go to original source...
  49. Sáňka M., Materna J. (2004): Indikátory kvality zemědělských a lesních půd ČR. Prague, Ministry of Agriculture of the Czech Republic: 84.
  50. Singer M.J., Munns D.N. (1996): Soils. An Introduction. London, Prentice-Hall: 446.
  51. Špulák O. (2008): Natural regeneration of beech and competition from weed in the summit part of the Jizerské hory Mts. (Czech Republic). Austrian Journal of Forest Science, 125: 79-88.
  52. Svoboda M., Matějka K., Kopáček J. (2006): Biomass and element pools of understory vegetation in the catchments of Čertovo Lake and Plešné Lake in the Bohemian Forest. Biologia, 61: 509-521. Go to original source...
  53. Ter Braak C.J.F., Šmilauer P. (2002): CANOCO Reference Manual and CanoDraw for Windows User's Guide: Software for Canonical Community Ordination (version 4.5). New York, Microcomputer Power: 500.
  54. Ulbrichová I., Kupka I., Podrázský V., Kubeček J., Fulín M. (2014): Douglas-fir as a soil improving species. Zprávy lesnického výzkumu, 59: 72-78.
  55. Ulrich B. (1981): Ökologische Gruppierung von Böden nach ihrem chemischen Bodenzustand. Zeitschrift für Pflanzenernährung und Bodenkunde, 144: 289-305. Go to original source...
  56. Vacek S., Vančura K., Zingari P.C., Jeník J., Simon J., Smejkal J. (2003): Mountain Forests of the Czech Republic. Prague, Ministry of Agriculture of the Czech Republic: 311.
  57. Viewegh J., Kusbach A., Mikeska M. (2003): Czech forest ecosystem classification. Journal of Forest Science, 49: 74-82. Go to original source...
  58. Zanella A., Jabiol B., Ponge J.F., Sartori G., De Waal R., Van Delft B., Graefe U., Cools N., Katzensteiner K., Hager H., Englisch M. (2011): A European morpho-functional classification of humus forms. Geoderma, 164: 138-145. Go to original source...
  59. Zbíral J. et al. (2001): Porovnání extrakčních postupů pro stanovení základních živin v půdách ČR. Brno, Ústřední kontrolní a zkušební ústav zemědělský: 205.

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.