Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Extracting 3D model feature lines based on conditional random fields

  • Published:
Journal of Zhejiang University SCIENCE C Aims and scope Submit manuscript

Abstract

We propose a 3D model feature line extraction method using templates for guidance. The 3D model is first projected into a depth map, and a set of candidate feature points are extracted. Then, a conditional random fields (CRF) model is established to match the sketch points and the candidate feature points. Using sketch strokes, the candidate feature points can then be connected to obtain the feature lines, and using a CRF-matching model, the 2D image shape similarity features and 3D model geometric features can be effectively integrated. Finally, a relational metric based on shape and topological similarity is proposed to evaluate the matching results, and an iterative matching process is applied to obtain the globally optimized model feature lines. Experimental results showed that the proposed method can extract sound 3D model feature lines which correspond to the initial sketch template.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Canny, J., 1986. A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell., 8(6):679–698. [doi:10.1109/TPAMI.1986.4767851]

    Article  Google Scholar 

  • Catalano, C.E., Mortara, M., Spagnuolo, M., Falcidieno, B., 2011. Semantics and 3D media: current issues and perspectives. Comput. Graph., 35(4):869–877. [doi:10.1016/j.cag.2011.03.040]

    Article  Google Scholar 

  • Cole, F., Golovinskiy, A., Limpaecher, A., Barros, H.S., Finikelstein, A., Funkhouser, T., Rusinkiewicz, S., 2008. Where do people draw lines?. ACM Trans. Graph., 27(3), Article 88, p.1–11. [doi:10.1145/1360612.1360687]

    Article  Google Scholar 

  • DeCarlo, D., Finkelstein, A., Rusinkiewicz, S., Santella, A., 2003. Suggestive contours for conveying shape. ACM Trans. Graph., 22(3):848–855. [doi:10.1145/882262.882 354]

    Article  Google Scholar 

  • Hertzmann, A., 1999. Introduction to 3D Non-photorealistic Rendering: Silhouettes and Outlines. ACM SIGGRAPH Course Notes, p.15–29.

    Google Scholar 

  • Hertzmann, A., 2010. Non-photorealistic Rendering and the Science of Art. Proc. 8th Int. Symp. on Non-photorealistic Animation and Rendering, p.147–157. [doi:10.1145/1809939.1809957]

    Google Scholar 

  • Interrante, V., Fuchs, H., Pizer, S., 1995. Enhancing Transparent Skin Surfaces with Ridge and Valley Lines. Proc. 6th Conf. on Visualization, p.52–59. [doi:10.1109/VISUAL.1995.480795]

    Chapter  Google Scholar 

  • Judd, T., Durand, F., Adelson, E.H., 2007. Apparent ridges for line drawing. ACM Trans. Graph., 26(3), Article 19. [doi:10.1145/1276377.1276401]

    Google Scholar 

  • Kalogerakis, E., Nowrouzezahrai, D., Simari, P., McCrae, J., Hertzmann, A., Singh, K., 2009. Data-driven curvature for real-time line drawing of dynamic scenes. ACM Trans. Graph., 28(1), Article 11, p.1–13. [doi:10.1145/1477926.1477937]

    Article  Google Scholar 

  • Kalogerakis, E., Nowrouzezahrai, D., Breslav, S., Hertzmann, A., 2012. Learning hatching for pen-and-ink illustration of surfaces. ACM Trans. Graph., 31(1), Article 1, p.1–17. [doi:10.1145/2077341.2077342]

    Article  Google Scholar 

  • Kraevoy, V., Sheffer, A., Michiel, P., 2009. Modeling from Contour Drawings. Proc. 6th Eurographics Symp. on Sketch-Based Interfaces and Modeling, p.37–44. [doi:10.1145/1572741.1572749]

    Chapter  Google Scholar 

  • Lafferty, J., McCallum, A., Pereira, F., 2001. Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data. Proc. 18th Int. Conf. on Machine Learning, p.282–289.

    Google Scholar 

  • Lee, Y., Markosian, L., Lee, S., Hughes, J.F., 2007. Line drawings via abstracted shading. ACM Trans. Graph., 26(3), Article 18, p.1–6. [doi:10.1145/1276377.1276400]

    Article  Google Scholar 

  • Lum, E.B., Ma, K.L., 2005. Expressive line selection by example. Vis. Comput., 21(8–10):811–820. [doi:10.1007/s00371-005-0342-y]

    Article  Google Scholar 

  • Mao, C., Qin, S.F., Wright, D., 2009. A sketch-based approach to human body modeling. Comput. Graph., 33(4):521–541. [doi:10.1016/j.cag.2009.03.028]

    Article  Google Scholar 

  • Murphy, K., Weiss, Y., Jordan, M., 1999. Loopy Belief Propagation for Approximate Inference: an Empirical Study. Proc. Conf. on Uncertainty in Artificial Intelligence, p.467–475.

    Google Scholar 

  • Olsen, L., Samavati, F.F., Sousa, M.C., Jorge, J.A., 2009. Sketch-based modeling: a survey. Comput. Graph., 33(1): 85–103. [doi:10.1016/j.cag.2008.09.013]

    Article  Google Scholar 

  • Ramos, F., Fox, D., Durrant, W.H., 2007. CRF-Matching: Conditional Random Fields for Feature-Based Scan Matching. Proc. Robotics: Science and Systems, p.201–208.

    Google Scholar 

  • Saito, T., Takahashi, T., 1990. Comprehensible Rendering of 3-D Shapes. ACM SIGGRAPH Comput. Graph., 24(4): 197–206. [doi:10.1145/97880.97901]

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng-xing Sun.

Additional information

Project supported by the National Natural Science Foundation of China (Nos. 61272219, 61100110, and 61021062), the National High-Tech R&D Program (863) of China (No. 2007AA01Z334), the Program for New Century Excellent Talents in University (No. NCET-04-04605), and the Science and Technology Program of Jiangsu Province, China (Nos. BE2010072, BE2011058, and BY2012190)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Yy., Sun, Zx., Liu, K. et al. Extracting 3D model feature lines based on conditional random fields. J. Zhejiang Univ. - Sci. C 14, 551–560 (2013). https://doi.org/10.1631/jzus.CIDE1308

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.CIDE1308

Key words

CLC number

Navigation