Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Exploring optimal combination of a file system and an I/O scheduler for underlying solid state disks

  • Published:
Journal of Zhejiang University SCIENCE C Aims and scope Submit manuscript

Abstract

Performance and energy consumption of a solid state disk (SSD) highly depend on file systems and I/O schedulers in operating systems. To find an optimal combination of a file system and an I/O scheduler for SSDs, we use a metric called the aggregative indicator (AI), which is the ratio of SSD performance value (e.g., data transfer rate in MB/s or throughput in IOPS) to that of energy consumption for an SSD. This metric aims to evaluate SSD performance per energy consumption and to study the SSD which delivers high performance at low energy consumption in a combination of a file system and an I/O scheduler. We also propose a metric called Cemp to study the changes of energy consumption and mean performance for an Intel SSD (SSD-I) when it provides the largest AI, lowest power, and highest performance, respectively. Using Cemp, we attempt to find the combination of a file system and an I/O scheduler to make SSD-I deliver a smooth change in energy consumption. We employ Filebench as a workload generator to simulate a wide range of workloads (i.e., varmail, fileserver, and webserver), and explore optimal combinations of file systems and I/O schedulers (i.e., optimal values of AI) for tested SSDs under different workloads. Experimental results reveal that the proposed aggregative indicator is comprehensive for exploring the optimal combination of a file system and an I/O scheduler for SSDs, compared with an individual metric.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agrawal, N., Bolosky, W.J., Douceur, J.R., et al., 2007. A five-year study of file-system metadata. ACM Trans. Storage, 3(3), Article 9. [doi:10.1145/1288783.1288788]

    Google Scholar 

  • Agrawal, N., Prabhakaran, V., Wobber, T., et al., 2008. Design tradeoffs for SSD performance. USENIX Annual Technical Conf., p.57–70.

    Google Scholar 

  • Appleton, R., 1997. Kernel korner: a non-technical look inside the EXT2 file system. Linux J., 1997(40es), Article 19.

    Google Scholar 

  • Ban, A., 1995. Flash File System. US Patent 5 404 485.

    Google Scholar 

  • Bux, W., 2009. Performance Evaluation of the Write Operation in Flash-Based Solid-State Drives. Technical Report No. RZ3757, IBM Research, Zurich, Rschlikon.

    Google Scholar 

  • Chen, F., Koufaty, D.A., Zhang, X.D., 2009. Understanding intrinsic characteristics and system implications of flash memory based solid state drives. Proc. 11th Int. Joint Conf. on Measurement and Modeling of Computer Systems, p.181–192. [doi:10.1145/1555349.1555371]

    Google Scholar 

  • Desnoyers, P., 2010. Empirical evaluation of NAND flash memory performance. ACM SIGOPS Oper. Syst. Rev., 44(1):50–54. [doi:10.1145/1740390.1740402]

    Article  Google Scholar 

  • Dirik, C., Jacob, B., 2009. The performance of PC solidstate disks (SSDs) as a function of bandwidth, concurrency, device architecture, and system organization. ACM SIGARCH Comput. Archit. News, 37(3):279–289. [doi:10.1145/1555815.1555790]

    Article  Google Scholar 

  • Gupta, A., Kim, Y., Urgaonkar, B., 2009. DFTL: a flash translation layer employing demand-based selective caching of page-level address mappings. Proc. 14th Int. Conf. on Architectural Support for Programming Languages and Operating Systems, p.229–240. [doi:10.1145/1508244.1508271]

    Google Scholar 

  • Heger, D.A., Quinn, R., 2010. Linux 2.6 IO performance analysis, quantification, and optimization. Proc. Int. Conf. for Performance and Capacity Management-CMG.

    Google Scholar 

  • Hu, X.Y., Haas, R., 2010. The Fundamental Limit of Flash Random Write Performance: Understanding, Analysis and Performance Modelling. Technical Report No. RZ3771, IBM Research, Zurich, Rschlikon.

    Google Scholar 

  • Huang, H.H., Li, S., Szalay, A., et al., 2011. Performance modeling and analysis of flash-based storage devices. IEEE 27th Symp. on Mass Storage Systems and Technologies, p.1–11. [doi:10.1109/MSST.2011.5937213]

    Google Scholar 

  • Iliadis, I., 2010. Performance of the Greedy Garbage-Collection Scheme in Flash-Based Solid-State Drives. Technical Report No. RZ3769, IBM Research, Zurich, Rschlikon.

    Google Scholar 

  • Jung, D., Chae, Y.H., Jo, H., et al., 2007. A group-based wear-leveling algorithm for large-capacity flash memory storage systems. Proc. Int. Conf. on Compilers, Architecture, and Synthesis for Embedded Systems, p.160–164. [doi:10.1145/1289881.1289911]

    Google Scholar 

  • Jung, M., Prabhakar, R., Kandemir, M.T., 2012. Taking garbage collection overheads off the critical path in SSDs. Proc. 13th Int. Middleware Conf., p.164–186. [doi:10.1007/978-3-642-35170-9_9]

    Google Scholar 

  • Kang, J.U., Jo, H., Kim, J.S., et al., 2006. A superblockbased flash translation layer for NAND flash memory. Proc. 6th ACM & IEEE Int. Conf. on Embedded Software, p.161–170. [doi:10.1145/1176887.1176911]

    Chapter  Google Scholar 

  • Kim, J., Kim, J.M., Noh, S.H., et al., 2002. A spaceefficient flash translation layer for CompactFlash systems. IEEE Trans. Consum. Electron., 48(2):366–375. [doi:10.1109/TCE.2002.1010143]

    Article  Google Scholar 

  • Kim, J., Oh, Y., Kim, E., et al., 2009. Disk schedulers for solid state drivers. Proc. 7th ACM Int. Conf. on Embedded Software, p.295–304. [doi:10.1145/1629335.1629375]

    Chapter  Google Scholar 

  • Kim, J., Seo, S., Jung, D., et al., 2012. Parameter-aware I/O management for solid state disks (SSDs). IEEE Trans. Comput., 61(5):636–649. [doi:10.1109/TC.2011.76]

    Article  MathSciNet  Google Scholar 

  • Kim, J.H., Jung, D., Kim, J.S., et al., 2009. A methodology for extracting performance parameters in solid state disks (SSDs). IEEE Int. Symp. on Modeling, Analysis & Simulation of Computer and Telecommunication Systems, p.1–10. [doi:10.1109/MASCOT.2009.5366154]

    Google Scholar 

  • Kim, Y., Tauras, B., Gupta, A., et al., 2009. FlashSim: a simulator for NAND flash-based solid-state drives. 1st Int. Conf. on Advances in System Simulation, p.125–131. [doi:10.1109/SIMUL.2009.17]

    Google Scholar 

  • Konishi, R., Amagai, Y., Sato, K., et al., 2006. The Linux implementation of a log-structured file system. ACM SIGOPS Oper. Syst. Rev., 40(3):102–107. [doi:10.1145/1151374.1151375]

    Article  Google Scholar 

  • Lee, J.D., Hur, S.H., Choi, J.D., 2002. Effects of floatinggate interference on NAND flash memory cell operation. IEEE Electron Dev. Lett., 23(5):264–266. [doi:10.1109/55.998871]

    Article  Google Scholar 

  • Lee, S., Shin, D., Kim, Y.J., et al., 2008. LAST: localityaware sector translation for NAND flash memory-based storage systems. ACM SIGOPS Oper. Syst. Rev., 42(6):36–42. [doi:10.1145/1453775.1453783]

    Article  Google Scholar 

  • Lee, S.W., Park, D.J., Chung, T.S., et al., 2007. A log buffer-based flash translation layer using fullyassociative sector translation. ACM TECS, 6(3), Article 18. [doi:10.1145/1275986.1275990]

    Google Scholar 

  • Lee, S.W., Moon, B., Park, C., et al., 2008. A case for flash memory SSD in enterprise database applications. Proc. ACM SIGMOD Int. Conf. on Management of Data, p.1075–1086. [doi:10.1145/1376616.1376723]

    Google Scholar 

  • Lu, Y., Shu, J., Zheng, W., et al., 2013. Extending the lifetime of flash-based storage through reducing write amplification from file systems. Proc. 11th USENIX Conf. on File and Storage Technologies, p.257–270.

    Google Scholar 

  • Luo, J., Zhao, G., 2007. Solid State Hard Disk. US Patent 764 231.

    Google Scholar 

  • Maghraoui, K.E., Kandiraju, G., Jann, J., et al., 2010. Modeling and simulating flash based solid-state disks for operating systems. Proc. 1st Joint WOSP/SIPEW Int. Conf. on Performance Engineering, p.15–26. [doi:10.1145/1712605.1712611]

    Chapter  Google Scholar 

  • Masuoka, F., Momodomi, M., Iwata, Y., et al., 1987. New ultra high density EPROM and flash EEPROM with NAND structure cell. Int. Electron Devices Meeting, p.552–555. [doi:10.1109/IEDM.1987.191485]

    Google Scholar 

  • McKusick, M.K., Joy, W.N., Leffler, S.J., et al., 1984. A fast file system for UNIX. ACM Trans. Comput. Syst., 2(3):181–197. [doi:10.1145/989.990]

    Article  Google Scholar 

  • Moallem, M., 2008. A Study on the Performance Evaluation of Linux I/O Schedulers. MS Thesis, University of Toronto, Canada.

    Google Scholar 

  • Mohan, V., Gurumurthi, S., Stan, M.R., 2010. FlashPower: a detailed power model for NAND flash memory. Proc. Conf. & Exhibition on Design, Automation & Test in Europe, p.502–507. [doi:10.1109/DATE.2010.5457154]

    Google Scholar 

  • Murugan, M., Du, D.H.C, 2011. Rejuvenator: a static wear leveling algorithm for NAND flash memory with minimized overhead. IEEE 27th Symp. on Mass Storage Systems and Technologies, p.1–12. [doi:10.1109/MSST.2011.5937225]

    Google Scholar 

  • O’Brien, K., Salyers, D.C., Striegel, A.D., et al., 2008. Power and performance characteristics of USB flash drives. Int. Symp. on a World of Wireless, Mobile and Multimedia Networks, p.1–4. [doi:10.1109/WOWMOM.2008.4594868]

    Google Scholar 

  • Park, J., Yoo, S., Lee, S., et al., 2009. Power modeling of solid state disk for dynamic power management policy design in embedded systems. Proc. 7th IFIP Int. Workshop on Software Technologies for Embedded and Ubiquitous Systems, p.24–35. [doi:10.1007/978-3-642-10265-3_3]

    Chapter  Google Scholar 

  • Park, S., Shen, K., 2009. A performance evaluation of scientific I/O workloads on flash-based SSDs. IEEE Int. Conf. on Cluster Computing and Workshops, p.1–5. [doi:10.1109/CLUSTR.2009.5289148]

    Google Scholar 

  • Park, S., Kim, Y., Urgaonkar, B., et al., 2011. A comprehensive study of energy efficiency and performance of flash-based SSD. J. Syst. Archit., 57(4):354–365. [doi:10.1016/j.sysarc.2011.01.005]

    Article  Google Scholar 

  • Pratt, S.L., Heger, D.A., 2004. Workload dependent performance evaluation of the Linux 2.6 I/O schedulers. Linux Symp.

    Google Scholar 

  • Riska, A., Larkby-Lahet, J., Riedel, E., 2007. Evaluating block-level optimization through the IO path. USENIX Annual Technical Conf., p.247–260.

    Google Scholar 

  • Rosenblum, M., Ousterhout, J.K., 1992. The design and implementation of a log-structured file system. ACM Trans. Comput. Syst., 10(1):26–52. [doi:10.1145/146941.146943]

    Article  Google Scholar 

  • Sehgal, P., Tarasov, V., Zadok, E., 2010. Evaluating performance and energy in file system server workloads. 8th USENIX Conf. on File and Storage Technologies, p.253–266.

    Google Scholar 

  • Seo, E., Park, S.Y., Urgaonkar, B., 2008. Empirical analysis on energy efficiency of flash-based SSDs. Proc. Conf. on Power Aware Computing and Systems, p.1–5.

    Google Scholar 

  • Tweedie, S., 2000. Ext3, journaling filesystem. Ottawa Linux Symp., p.24–29.

    Google Scholar 

  • Wang, H., Huang, P., He, S., et al., 2013. A novel I/O scheduler for SSD with improved performance and lifetime. IEEE 29th Symp. on Mass Storage Systems and Technologies, p.1–5. [doi:10.1109/MSST.2013.6558426]

    Google Scholar 

  • Wang, R.Y., Anderson, T.E., 1993. xFS: a wide area mass storage file system. Proc. 4th Workshop on Workstation Operating Systems, p.71–78. [doi:10.1109/WWOS.1993.348169]

    Chapter  Google Scholar 

  • Wang, Y.K., Goda, K., Nakano, M., et al., 2011. Performance evaluation of flash SSDs in a transaction processing system. IEICE Trans. Inform. Syst., 94(3):602–611. [doi:10.1587/transinf.E94.D.602]

    Article  Google Scholar 

  • Wei, Q.S., Gong, B., Pathak, S., et al., 2011. WAFTL: a workload adaptive flash translation layer with data partition. IEEE 27th Symp. on Mass Storage Systems and Technologies, p.1–12. [doi:10.1109/MSST.2011.5937217]

    Google Scholar 

  • Yoo, B., Won, Y., Choi, S., et al., 2011. SSD characterization: from energy consumption’s perspective. 3rd USENIX Workshop on Hot Topics in Storage and File Systems.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-sheng Xie.

Additional information

Project supported by the National Basic Research Program (973) of China (No. 2011CB302303), the National Natural Science Foundation of China (No. 60933002), the National High-Tech R&D Program (863) of China (No. 2013AA013203), and the U.S. National Science Foundation under Grants CCF-0845257 (CAREER), CNS-0917137 (CSR), CNS-0757778 (CSR), CCF-0742187 (CPA), CNS-0831502 (CyberTrust), CNS-0855251 (CRI), OCI-0753305 (CI-TEAM), DUE-0837341 (CCLI), and DUE-0830831 (SFS)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, H., Qin, X. & Xie, Cs. Exploring optimal combination of a file system and an I/O scheduler for underlying solid state disks. J. Zhejiang Univ. - Sci. C 15, 607–621 (2014). https://doi.org/10.1631/jzus.C1300314

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.C1300314

Keywords

CLC number

Navigation