Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Knowledge modeling based on interval-valued fuzzy rough set and similarity inference: prediction of welding distortion

  • Published:
Journal of Zhejiang University SCIENCE C Aims and scope Submit manuscript

Abstract

Knowledge-based modeling is a trend in complex system modeling technology. To extract the process knowledge from an information system, an approach of knowledge modeling based on interval-valued fuzzy rough set is presented in this paper, in which attribute reduction is a key to obtain the simplified knowledge model. Through defining dependency and inclusion functions, algorithms for attribute reduction and rule extraction are obtained. The approximation inference plays an important role in the development of the fuzzy system. To improve the inference mechanism, we provide a method of similarity-based inference in an interval-valued fuzzy environment. Combining the conventional compositional rule of inference with similarity based approximate reasoning, an inference result is deduced via rule translation, similarity matching, relation modification, and projection operation. This approach is applied to the problem of predicting welding distortion in marine structures, and the experimental results validate the effectiveness of the proposed methods of knowledge modeling and similarity-based inference.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Atanassov, K.T., 1986. Intuitionistic fuzzy sets. Fuzzy Sets Syst., 20(1):87–96. [doi:10.1016/S0165-0114(86)80034-3]

    Article  MATH  MathSciNet  Google Scholar 

  • Bustince, H., Burillo, P., 1996. Vague sets are intuitionistic fuzzy sets. Fuzzy Sets Syst., 79(3):403–405. [doi:10.1016/0165-0114(95)00154-9]

    Article  MATH  MathSciNet  Google Scholar 

  • Chen, S.M., 1994. A weighted fuzzy reasoning algorithm for medical diagnosis. Dec. Support Syst., 11(1):37–43. [doi:10.1016/0167-9236(94)90063-9]

    Article  Google Scholar 

  • Chen, S.M., 1997. Bidirectional approximate reasoning based on interval-valued fuzzy sets. Fuzzy Sets Syst., 91(3): 339–353. [doi:10.1016/S0165-0114(97)86594-3]

    Article  MATH  Google Scholar 

  • Cornelis, C., Jensen, R., 2010. Attribute selection with fuzzy decision reducts. Inform. Sci., 180(2):209–224. [doi:10.1016/j.ins.2009.09.008]

    Article  MATH  MathSciNet  Google Scholar 

  • Cornelis, C., Cock, M.D., Kerre, E.E., 2003. Intuitionistic fuzzy rough sets: at the crossroads of imperfect knowledge. Expert Syst., 20(5):260–270. [doi:10.1111/1468-0394.00250]

    Article  Google Scholar 

  • Cornelis, C., Deschrijver, G., Kerre, E.E., 2004. Implication in intuitionistic fuzzy and interval-valued fuzzy set theory: construction, classification, application. Int. J. Approx. Reas., 35(1):55–95. [doi:10.1016/S0888-613X(03)00072-0]

    Article  MATH  MathSciNet  Google Scholar 

  • Deschrijver, G., Kerre, E.E., 2003. On the relationship between some extensions of fuzzy set theory. Fuzzy Sets Syst., 133(2):227–235. [doi:10.1016/S0165-0114(02)00127-6]

    Article  MATH  MathSciNet  Google Scholar 

  • Dubois, D., Prade, H., 1990. Rough sets and fuzzy rough sets. Int. J. Gener. Syst., 17(2–3):191–209. [doi:10.1080/03081079008935107]

    Article  MATH  Google Scholar 

  • Fan, F., Li, J.Z., Gao, Z.A., 2008. Design of self-adaptive PID controller based on GA-vague sets. Comput. Eng. Appl., 44(29):99–101 (in Chinese). [doi:10.3778/j.issn.1002-8331.2008.29.027]

    Google Scholar 

  • Feng, L., Wang, G.Y., 2010. Knowledge acquisition in vague objective information systems based on rough sets. Expert Syst., 27(2):129–142. [doi:10.1111/j.1468-0394.2010.00512.x]

    Article  Google Scholar 

  • Feng, Z.Q., Liu, C.G., 2012. On vague logics and approximate reasoning based on vague linear transformation. Int. J. Syst. Sci., 43(9):1591–1602. [doi:10.1080/00207721.2010.549579]

    Article  MathSciNet  Google Scholar 

  • Gau, W.L., Buehrer, D.J., 1993. Vague sets. IEEE Trans. Syst. Man Cybern., 23(2):610–614. [doi:10.1109/21.229476]

    Article  MATH  Google Scholar 

  • Gong, Z.T., Sun, B.Z., Chen, D.G., 2008. Rough set theory for the interval-valued fuzzy information systems. Inform. Sci., 178(8):1968–1985. [doi:10.1016/j.ins.2007.12.005]

    Article  MATH  MathSciNet  Google Scholar 

  • Gorzalczany, M.B., 1987. A method of inference in approximate reasoning based on interval-valued fuzzy sets. Fuzzy Sets Syst., 21(1):1–17. [doi:10.1016/0165-0114(87)90148-5]

    Article  MATH  MathSciNet  Google Scholar 

  • Guan, Y.Y., Wang, H.K., 2006. Set-valued information systems. Inform. Sci., 176(17):2507–2525. [doi:10.1016/j.ins.2005.12.007]

    Article  MATH  MathSciNet  Google Scholar 

  • Hai, X., Lei, Y.J., 2010. Intuitionistic fuzzy approximate reasoning based on weighted similarity measure. Comput. Eng. Des., 31(21):4678–4681 (in Chinese).

    Google Scholar 

  • Jensen, R., Shen, Q., 2009. New approaches to fuzzy-rough feature selection. IEEE Trans. Fuzzy Syst., 17(4):824–838. [doi:10.1109/TFUZZ.2008.924209]

    Article  Google Scholar 

  • Kuncheva, L.I., 1992. Fuzzy rough sets: application to feature selection. Fuzzy Sets Syst., 51(2):147–153. [doi:10.1016/0165-0114(92)90187-9]

    Article  MathSciNet  Google Scholar 

  • Liang, J.R., 2007. The research of vague-rough sets based on triangle model. Comput. Sci., 34(10):185–187 (in Chinese). [doi:10.3969/j.issn.1002-137X.2007.10.047]

    Google Scholar 

  • Ou, X.Y., Zhang, F.J., Wei, Y.B., 2009. Vague set fuzzy reasoning mechanism based on the temperature control system design. J. Qiongzhou Univ., 16(5):29–31 (in Chinese). [doi:10.3969/j.issn.1008-6722.2009.05.010]

    Google Scholar 

  • Pawlak, Z., 1982. Rough sets. Int. J. Comput. Inform. Sci., 11(5):341–356. [doi:10.1007/BF01001956]

    MATH  MathSciNet  Google Scholar 

  • Qiu, W.G., 2006. Rough vague sets based on general binary relation. Comput. Sci., 33(2):191–192 (in Chinese). [doi:10.3969/j.issn.1002-137X.2006.02.054]

    Google Scholar 

  • Raha, S., 2008. Similarity based approximate reasoning: fuzzy control. J. Appl. Logic, 6(1):47–71. [doi:10.1016/j.jal.2007.01.001]

    Article  MATH  MathSciNet  Google Scholar 

  • Shen, Q., Chouchoulas, A., 2000. A modular approach to generating fuzzy rules with reduced attributes for the monitoring of complex systems. Eng. Appl. Artif. Intell., 13(3):263–278. [doi:10.1016/S0952-1976(00)00010-5]

    Article  Google Scholar 

  • Turksen, I.B., 1986. Interval valued fuzzy sets based on normal forms. Fuzzy Sets Syst., 20(2):191–210. [doi:10.1016/0165-0114(86)90077-1]

    Article  MATH  MathSciNet  Google Scholar 

  • Turksen, I.B., Zhao, Z., 1988. An approximate analogical reasoning based on similarity measures. IEEE Trans. Syst. Man Cybern., 18(6):1049–1056. [doi:10.1109/21.23107]

    Article  Google Scholar 

  • Wan, S.P., 2010. Survey on intuitionistic fuzzy multi-attribute decision making approach. Contr. & Dec., 25(11):1061–1066 (in Chinese).

    Google Scholar 

  • Wang, D.G., Meng, Y.P., Li, H.X., 2008. A fuzzy similarity inference method for fuzzy reasoning. Comput. Math. Appl., 56(10):2445–2454. [doi:10.1016/j.camwa.2008.03.054]

    Article  MATH  MathSciNet  Google Scholar 

  • Yang, H.C., Chen, H., 2011. Intuitionistic fuzzy approximate reasoning based on intuitionistic fuzzy operation. Appl. Res. Comput., 28(1):102–104 (in Chinese). [doi:10.3969/j.issn.1001-3695.2011.01.027]

    Google Scholar 

  • Yang, L.J., Wang, Y.L., 2010. A new similarity measure and its application to pattern recognition. J. Yunnan Univ. Natl., 19(1):71–73 (in Chinese). [doi:10.3969/j.issn.1672-8513.2010.01.018]

    Google Scholar 

  • Yeung, D.S., Tsang, E.C.C., 1997. A comparative study on similarity-based fuzzy reasoning methods. IEEE Trans. Syst. Man Cybern. B, 27(2):216–227. [doi:10.1109/3477.558802]

    Article  Google Scholar 

  • Zadeh, L.A., 1965. Fuzzy sets. Inform. Contr., 8(3):338–353. [doi:10.1016/S0019-9958(65)90241-X]

    Article  MATH  MathSciNet  Google Scholar 

  • Zhang, Q.S., Jiang, S.Y., 2010. System decision making method based on vague bidirectional approximate reasoning. Comput. Sci., 37(4):219–223 (in Chinese). [doi: 10.3969/j.issn.1002-137X.2010.04.055]

    Google Scholar 

  • Zheng, C.H., Li, T.F., Gui, J.Z., 2008. Study on aeroengine fault diagnosis based on similarity measures between vague sets. Aeronaut. Comput. Techn., 38(2):34–36 (in Chinese). [doi:10.3969/j.issn.1671-654X.2008.02.009]

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hu Huang.

Additional information

Project supported by 2013 Comprehensive Reform Pilot of Marine Engineering Specialty (No. ZG0434)

Electronic supplementary materials: The online version of this article (http://dx.dor.org/10.1631/jzus.C1300370) contains supplementary materials, which are available to authorized users

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, Zq., Liu, Cg. & Huang, H. Knowledge modeling based on interval-valued fuzzy rough set and similarity inference: prediction of welding distortion. J. Zhejiang Univ. - Sci. C 15, 636–650 (2014). https://doi.org/10.1631/jzus.C1300370

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.C1300370

Key words

CLC number

Navigation