Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

A frequency domain design of PID controller for an AVR system

  • Published:
Journal of Zhejiang University SCIENCE C Aims and scope Submit manuscript

Abstract

We propose a new proportional-integral-derivative (PID) controller design method for an automatic voltage regulation (AVR) system based on approximate model matching in the frequency domain. The parameters of the PID controller are obtained by approximate frequency response matching between the closed-loop control system and a reference model with the desired specifications. Two low frequency points are required for matching the frequency response, and the design method yields linear algebraic equations, solution of which gives the controller parameters. The effectiveness of the proposed method is demonstrated through examples taken from the literature and comparison with some popular methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aguila-Camacho, N., Duarte-Mermoud, M.A., 2013. Fractional adaptive control for an automatic voltage regulator. ISA Trans., 52(6):807–815. [doi:10.1016/j.isatra.2013.06.005]

    Article  Google Scholar 

  • Ang, K.H., Chong, G., Li, Y., 2005. PID control system analysis, design and technology. IEEE Trans. Contr. Syst. Technol., 13(4):559–576. [doi:10.1109/TCST.2005.847331]

    Article  Google Scholar 

  • Astrom, K.J., Hagglund, T., 1995. PID Controllers Theory Design and Tuning (2nd Ed.). Instrument Society of America, Research Triangle Park, North Caorlina.

    Google Scholar 

  • Chen, D., Seborg, D.E., 2002. PI/PID controller design based on direct synthesis and disturbance rejection. Ind. Eng. Chem. Res., 41(19):4807–4822. [doi:10.1021/ie010756m]

    Article  Google Scholar 

  • Gaing, Z.L., 2004. A particle swarm optimization approach for optimum design of PID controller in AVR system. IEEE Trans. Energy Conv., 19(2):384–391. [doi:10.1109/TEC.2003.821821]

    Article  Google Scholar 

  • Ho, W.K., Hang, C.C., Cao, L.S., 1995. Tuning of PID controllers based on gain and phase margin specification. Automatica, 31(3):497–502. [doi:10.1016/0005-1098(94)00130-B]

    Article  MATH  MathSciNet  Google Scholar 

  • Kim, D.H., 2011. Hybrid GA-BF based intelligent PID controller tuning for AVR system. Appl. Soft Comput., 11(1):11–22. [doi:10.1016/j.asoc.2009.01.004]

    Article  Google Scholar 

  • Kundur, P., 1994. Power System Stability and Control. McGraw Hill, New York.

    Google Scholar 

  • Mukherjee, V., Ghoshal, S.P., 2007. Intelligent particle swarm optimized fuzzy PID controller for AVR system. Electr. Power Syst. Res., 77(12):1689–1698. [doi:10.1016/j.epsr.2006.12.004]

    Article  Google Scholar 

  • O’Dwyer, A., 2006. Handbook of PI and PID Controller Tuning Rules (2nd Ed.). Imperial College Press, London. [doi:10.1142/p424]

    Book  Google Scholar 

  • Pan, I., Das, S., 2013. Frequency domain design of fractional order PID controller for AVR system using chaotic multi-objective optimization. Int. J. Electr. Power Energy Syst., 51:106–118. [doi:10.1016/j.ijepes.2013.02.021]

    Article  Google Scholar 

  • Pan, S., Pal, J., 1995. Reduced order modelling of discretetime systems. Appl. Math. Model., 19(3):133–138. [doi: 10.1016/0307-904X(94)00010-4]

    Article  MATH  Google Scholar 

  • Panagopoulos, H., Astrom, K.J., Hagglund, T., 2002. Design of PID controllers based on constrained optimisation. IEE Proc.-Contr. Theory Appl., 149(1):32–40. [doi:10.1049/ip-cta:20020102]

    Article  Google Scholar 

  • Rivera, D.E., Morari, M., Skogestad, S., 1986. Internal model control. 4. PID controller design. Ind. Eng. Chem. Process Des. Dev., 25(1):252–265. [doi:10.1021/i200032a041]

    Article  Google Scholar 

  • Shen, J.C., 2002. New tuning method for PID controller. ISA Trans., 41(4):473–484. [doi:10.1016/S0019-0578(07)60103-7]

    Article  Google Scholar 

  • Tan, W., 2010. Unified tuning of PID load frequency controller for power system via IMC. IEEE Trans. Power Syst., 25(1):341–350. [doi:10.1109/TPWRS.2009.2036463]

    Article  Google Scholar 

  • Wang, L., Barnes, T.J.D., Cluett, W.R., 1995. New frequency domain design method for PID controllers. IEE Proc.-Contr. Theory Appl., 142(4):265–271. [doi:10.1049/ipcta: 19951859]

    Article  MATH  Google Scholar 

  • Zamani, M., Karimi-Ghartemani, M., Parniani, M., 2009. Design of a fractional order PID controller for an AVR using particle swarm optimization. Contr. Eng. Pract., 17(12):1380–1387. [doi:10.1016/j.conengprac.2009.07.005]

    Article  Google Scholar 

  • Zhu, H., Li, L., Zhao, Y., et al., 2009. CAS algorithm-based optimum design of PID controller in AVR system. Chaos Sol. Fract., 42(2):792–800. [doi:10.1016/j.chaos.2009.02.006]

    Article  MathSciNet  Google Scholar 

  • Ziegler, J.G., Nichols, N.B., 1942. Optimum settings for automatic controllers. Trans. ASME, 64:759–768.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md Nishat Anwar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anwar, M.N., Pan, S. A frequency domain design of PID controller for an AVR system. J. Zhejiang Univ. - Sci. C 15, 293–299 (2014). https://doi.org/10.1631/jzus.C1300218

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.C1300218

Key words

CLC number

Navigation