Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Amultiplemaneuvering targets tracking algorithm based on a generalized pseudo-Bayesian estimator of first order

  • Published:
Journal of Zhejiang University SCIENCE C Aims and scope Submit manuscript

Abstract

We describe the design of a multiple maneuvering targets tracking algorithm under the framework of Gaussian mixture probability hypothesis density (PHD) filter. First, a variation of the generalized pseudo-Bayesian estimator of first order (VGPB1) is designed to adapt to the Gaussian mixture PHD filter for jump Markov system models (JMS-PHD). The probability of each kinematic model, which is used in the JMS-PHD filter, is updated with VGPB1. The weighted sum of state, associated covariance, and weights for Gaussian components are then calculated. Pruning and merging techniques are also adopted in this algorithm to increase efficiency. Performance of the proposed algorithm is compared with that of the JMS-PHD filter. Monte-Carlo simulation results demonstrate that the optimal subpattern assignment (OSPA) distances of the proposed algorithm are lower than those of the JMS-PHD filter for maneuvering targets tracking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bar-Shalom, Y., Chang, K.C., Blom, H.A.P., 1989. Tracking a maneuvering target using input estimation versus the interacting multiple model algorithm. IEEE Trans. Aerosp. Electron. Syst., 25(2):296–300. [doi:10.1109/7.18693]

    Article  Google Scholar 

  • Bar-Shalom, Y., Li, X.R., Kirubarajan, T., 2001. Estimation with Applications to Tracking and Navigation. John Wiley & Sons, Inc., New York, USA. [doi:10.1002/0471221279]

    Book  Google Scholar 

  • Blom, H.A.P., Bar-Shalom, Y., 1988. The interacting multiple model algorithm for systems with Markovian switching coefficients. IEEE Trans. Automatic Control, 33(8):780–783. [doi:10.1109/9.1299]

    Article  MATH  Google Scholar 

  • Li, X.R., Jilkov, V.P., 2003. Survey of maneuvering target tracking. Part I: dynamic models. IEEE Trans. Aerosp. Electron. Syst., 39(4):1333–1364. [doi:10.1109/TAES.2003.1261132]

    Article  Google Scholar 

  • Mahler, R.P.S., 2003. Multitarget Bayes filtering via firstorder multitarget moments. IEEE Trans. Aerosp. Electron. Syst., 39(4):1152–1178. [doi:10.1109/TAES.2003.1261119]

    Article  Google Scholar 

  • Mahler, R.P.S., 2007. Statistical Multisource Multitarget Information Fusion. Artech House, Norwood, MA.

    MATH  Google Scholar 

  • Pasha, S.A., Vo, B.N., Tuan, H.D., Ma, W.K., 2009. A Gaussian mixture PHD filter for jump Markov system models. IEEE Trans. Aerosp. Electron. Syst., 45(3):919–936. [doi:10.1109/TAES.2009.5259174]

    Article  Google Scholar 

  • Pollard, E., Pannetier, B., Rombaut, M., 2011. Hybrid algorithms for multitarget tracking using MHT and GM-CPHD. IEEE Trans. Aerosp. Electron. Syst., 47(2):832–847. [doi:10.1109/TAES.2011.5751229]

    Article  Google Scholar 

  • Schuhmacher, D., Vo, B.T., Vo, B.N., 2008. A consistent metric for performance evaluation of multi-object filters. IEEE Trans. Signal Process., 56(8):3447–3457. [doi:10.1109/TSP.2008.920469]

    Article  MathSciNet  Google Scholar 

  • Vo, B.N., Ma, W.K., 2006. The Gaussian mixture probability hypothesis density filter. IEEE Trans. Signal Process., 54(11):4091–4104. [doi:10.1109/TSP.2006.881190]

    Article  Google Scholar 

  • Vo, B.N., Pasha, A., Tuan, H.D., 2006. A Gaussian Mixture PHD Filter for Nonlinear Jump Markov Models. Proc. 45th IEEE Conf. on Decision and Control, p.3162–3167. [doi:10.1109/CDC.2006.377103]

    Chapter  Google Scholar 

  • Vo, B.N., Vo, B.T., Mahler, R.P.S., 2012. Closed-form solutions to forward-backward smoothing. IEEE Trans. Signal Process., 60(1):2–17. [doi:10.1109/TSP.2011.2168519]

    Article  MathSciNet  Google Scholar 

  • Wu, J., Hu, S., Wang, Y., 2010. Probability-hypothesisdensity filter for multitarget visual tracking with trajectory recognition. Opt. Eng., 49(12):129701. [doi:10.1117/1.3518084]

    Article  Google Scholar 

  • Zhang, H., Jing, Z., Hu, S., 2009. Gaussian mixture CPHD filter with gating technique. Signal Process., 89(8):1521–1530. [doi:10.1016/j.sigpro.2009.02.006]

    Article  MATH  Google Scholar 

  • Zhang, S.C., Li, J.X., Wu, L.B., 2012. An Improvement to the Linear Jump Markov System Gaussian Mixture Probability Hypothesis Density Filter for Maneuvering Target Tracking. 7th IEEE Conf. on Industrial Electronics and Applications, p.1810–1815. [doi:10.1109/ICIEA.2012.6361021]

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shi-cang Zhang.

Additional information

Project supported by the National Natural Science Foundation of China (Nos. 61175008, 60935001, and 61104210), the Aviation Foundation (No. 20112057005), and the National Basic Research Program (973) of China (No. 2009CB824900)

A preliminary version was presented at the 7th IEEE Conference on Industrial Electronics and Applications, July 18–20, 2012, Singapore

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Sc., Li, Jx., Wu, Lb. et al. Amultiplemaneuvering targets tracking algorithm based on a generalized pseudo-Bayesian estimator of first order. J. Zhejiang Univ. - Sci. C 14, 417–424 (2013). https://doi.org/10.1631/jzus.C1200310

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.C1200310

Key words

CLC number

Navigation