Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Dust collector localization in trouble of moving freight car detection system

  • Published:
Journal of Zhejiang University SCIENCE C Aims and scope Submit manuscript

Abstract

For a long time, trouble detection and maintenance of freight cars have been completed manually by inspectors. To realize the transition from manual to computer-based detection and maintenance, we focus on dust collector localization under complex conditions in the trouble of moving freight car detection system. Using mid-level features which are also named flexible edge arrangement (FEA) features, we first build the edge-based 2D model of the dust collectors, and then match target objects by a weighted Hausdorff distance method. The difference is that the constructed weighting function is generated by the FEA features other than specified subjectively, which can truly reflect the most basic property regions of the 3D object. Experimental results indicate that the proposed algorithm has better robustness to variable lighting, different viewing angle, and complex texture, and it shows a stronger adaptive performance. The localization correct rate of the target object is over 90%, which completely meets the need of practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amit, Y., 1994. A nonlinear variational problem for image matching. SIAM J. Sci. Comput., 15(1):207–224. [doi:10.1137/0915014]

    Article  MathSciNet  MATH  Google Scholar 

  • Amit, Y., 2002. Sparse Models: Formulation, Training, and Statistical Properties. The MIT Press, Cambridge, US, p.121–137.

    Google Scholar 

  • Amit, Y., Grenander, U., Piccioni, M., 1991. Structural image restoration through deformable templates. J. Am. Stat. Assoc., 86(414):376–387. [doi:10.1080/01621459.1991.10475053]

    Article  Google Scholar 

  • Bajcsy, R., Kovacic, S., 1989. Multiresolution elastic matching. Comput. Vis. Graph. Image Process., 46(1):1–21. [doi:10.1016/S0734-189X(89)80014-3]

    Article  Google Scholar 

  • Chesnaud, C., Réfrégier, P., Boulet, V., 1999. Statistical region snake-based segmentation adapted to different physical noise models. IEEE Trans. Pattern Anal. Mach. Intell., 21(11):1145–1157. [doi:10.1109/34.809108]

    Article  Google Scholar 

  • Chui, H., Rangarajan, A., 2000. A New Algorithm for Non-rigid Point Matching. IEEE Conf. on Computer Vision and Pattern Recognition, p.44–51. [doi:10.1109/CVPR.2000.854733]

  • de Ruvo, P., Distante, A., Stella, E., Marino, F., 2009. A GPU-Based Vision System for Real Time Detection of Fastening Elements in Railway Inspection. IEEE Int. Conf. on Image Processing, p.2333–2336. [doi:10.1109/ICIP.2009.5414438]

  • Dubuisson, M.P., Jain, A.K., 1994. A Modified Hausdorff Distance for Object Matching. Proc. 12th Int. Conf. on Pattern Recognition, p.566–568. [doi:10.1109/ICPR.1994.576361]

  • Grenander, U., 1970. A unified approach to pattern analysis. Adv. Comput., 10(1):175–216. [doi:10.1016/S0065-2458(08)60436-2]

    Article  Google Scholar 

  • Hart, J.M., Resendiz, E., Freid, B., Sawadisavi, S., Barkan, C., Ahuja, N., 2008. Machine Vision Using Multi-spectral Imaging for Undercarriage Inspection of Railroad Equipment. Proc. 8th World Congress on Railway Research, p.1–8.

  • Hartley, R.I., Kahl, F., 2009. Global optimization through rotation space search. Int. J. Comput. Vis., 82(1):64–79. [doi:10.1007/s11263-008-0186-9]

    Article  Google Scholar 

  • Jesorsky, O., Kirchberg, K., Frischholz, R.W., 2001. Robust face detection using the Hausdorff distance. LNCS, 2091:90–95. [doi:10.1007/3-540-45344-x_14]

    Google Scholar 

  • Kass, M., Witkin, A., Terzopoulos, D., 1988. Snakes: active contour models. Int. J. Comput. Vis., 1(4):321–331. [doi:10.1007/BF00133570]

    Article  Google Scholar 

  • Li, H., Hartley, R., 2007. The 3D-3D Registration Problem Revisited. IEEE 11th Int. Conf. on Computer Vision, p.1–8. [doi:10.1109/ICCV.2007.4409077]

  • Lin, K.H., Lam, K.M., Siu, W.C., 2003. Spatially eigen-weighted Hausdorff distances for human face recognition. Pattern Recogn., 36(8):1827–1834. [doi:10.1016/S0031-3203(03)00011-6]

    Article  Google Scholar 

  • Liu, R., Wang, Y., 2005. Principle and Application of TFDS. China Railway Publication, Beijing, p.1–20 (in Chinese).

    Google Scholar 

  • Marino, F., Distante, A., Mazzeo, P.L., Stella, E., 2007. A real-time visual inspection system for railway maintenance: automatic hexagonal-headed bolts detection. IEEE Trans. Syst. Man. Cybern. Part C Appl. Rev., 37(3): 418–428. [doi:10.1109/TSMCC.2007.893278]

    Article  Google Scholar 

  • Metaxas, D., Koh, E., Badler, N.I., 1997. Multi-level shape representation using global deformations and locally adaptive finite elements. Int. J. Comput. Vis., 25(1):49–61. [doi:10.1023/A1007929702347]

    Article  Google Scholar 

  • Olsson, C., Kahl, F., Oskarsson, M., 2009. Branch-and-bound methods for Euclidean registration problems. IEEE Trans. Pattern Anal. Mach. Intell., 31(5):783–794. [doi:10.1109/TPAMI.2008.131]

    Article  Google Scholar 

  • Riesenhuber, M., Poggio, T., 2000. Models of object recognition. Nat. Neurosci., 3:1199–1204. [doi:10.1038/81479]

    Article  Google Scholar 

  • Rucklidge, W.J., 1997. Efficiently locating objects using the Hausdorff distance. Int. J. Comput. Vis., 24(3):251–270. [doi:10.1023/A:1007975324482]

    Article  Google Scholar 

  • Shi, F., Yang, J., Zhu, Y., 2009. Automatic segmentation of bladder in CT images. J. Zhejiang Univ.-Sci. A, 10(2): 239–246. [doi:10.1631/jzus.A0820157]

    Article  MATH  Google Scholar 

  • Suk, H., Lee, S., 2013. A novel Bayesian framework for discriminative feature extraction in brain-computer interfaces. IEEE Trans. Pattern Anal. Mach. Intell., 35(2):286–299. [doi:10.1109/TPAMI.2012.69]

    Article  Google Scholar 

  • Szeliski, R., Lavallée, S., 1996. Matching 3-D anatomical surfaces with non-rigid deformations using octree-splines. Int. J. Comput. Vis., 18(2):171–186. [doi:10.1007/BF00055001]

    Article  Google Scholar 

  • Tan, H., Zhang, Y.J., 2006. A novel weighted Hausdorff distance for face localization. Image Vis. Comput., 24(7): 656–662. [doi:10.1016/j.imavis.2005.05.011]

    Article  MathSciNet  Google Scholar 

  • Yella, S., Dougherty, M., Gupta, N.K., 2009. Condition monitoring of wooden railway sleepers. Transp. Res. Part C Emerg. Technol., 17(1):38–55. [doi:10.1016/j.trc.2008.06.002]

    Article  Google Scholar 

  • Zhang, H., Yang, J., Tao, W., Zhao, H., 2011. Vision method of inspecting missing fastening components in high-speed railway. Appl. Opt., 50(20):3658–3665. [doi:10.1364/AO.50.003658]

    Article  Google Scholar 

  • Zhu, S.C., Yuille, A., 1996. Region competition: unifying snakes, region growing, and Bayes/MDL for multiband image segmentation. IEEE Trans. Pattern Anal. Mach. Intell., 18(9):884–900. [doi:10.1109/34.537343]

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fu-qiang Zhou.

Additional information

Project supported by the National Natural Science Foundation of China (No. 61072134) and the Research Fund for the Doctoral Program of Higher Education of China (No. 20101102110033)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, Fq., Zou, R. & Gao, H. Dust collector localization in trouble of moving freight car detection system. J. Zhejiang Univ. - Sci. C 14, 98–106 (2013). https://doi.org/10.1631/jzus.C1200223

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.C1200223

Key words

CLC number

Navigation