Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Feasibility analysis for attitude estimation based on pulsar polarization measurement

  • Published:
Journal of Zhejiang University SCIENCE C Aims and scope Submit manuscript

Abstract

One of the important characteristics of pulsar radiation is polarization. It is considered not only as a probe for recognizing the structure of a magnetic field, but also as a lighthouse for estimating spacecraft attitude via orientation information between the pulsar and the detector. Although polarization of a pulsar has been studied for decades, until recently applications to determination of spacecraft attitude have been seldom reported. This paper deals with analysis of the feasibility of applying polarization information to attitude estimation. The stability factor (SFR) and observation fluctuation factor (OFR) are introduced to analyze the stability of a pulsar’s polarized position angle. Based on European Pulsar Network (EPN) data, several simulated instances are used to demonstrate that the accuracy requirement of attitude determination can be met via polarization measurement. The SFR of a pulsar is evaluated using simulated polarization data, and the OFR is used to analyze the relationship between fluctuation extent and observation time. Simulation results show that the polarized measurement of candidate pulsars PSR B0470-28 and PSR B2319+60 reaches the specification for attitude determination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bernhardt, M.G., Becher, W., Prinz, T., Breithuth, F.M., Walter, U., 2011. Autonomous Spacecraft Navigation Based on Pulsar Timing Information. 2nd ICST, p.1–4. [doi:10.1109/ICSpT.2011.6064649]

    Google Scholar 

  • Blaskiewicz, M., Cordes, J.M., Wasserman, I., 1991. A relativistic model of pulsar polarization. ApJ, 370:643–669. [doi:10.1086/169850]

    Article  Google Scholar 

  • Camilo, F., Reynolds, J., Johnston, S., Halpern, J.P., Ransom, S.M., van Straten, W., 2007. Polarized radio emission from the magnetar XTE J1810-197. ApJ, 659(1):L37–L40. [doi:10.1086/516630]

    Article  Google Scholar 

  • Chu, J.K., Zhao, K.C., Zhang, Q., Wang, T.C., 2008. Construction and performance test of a novel polarization sensor for navigation. Sens. Actuat. A, 148(1):75–82. [doi:10.1016/j.sna.2008.07.016]

    Article  Google Scholar 

  • Dean, A.J., Clark, D.J., Stephen, J.B., McBride, V.A., Bassano, A., Bird, A.J., Hill, A.B., Shaw, S.E., Ubertini, P., 2008. Polarized gamma-ray emission from the Crab. Science, 321(5893):1183–1185. [doi:10.1126/science.1149056]

    Article  Google Scholar 

  • European Pulsar Network, 2006. Citing Electronic Sources of Information. Available from http://www.jb.man.ac.uk/~pulsar/Resources/epn/browser.html [Accessed on May 22, 2012].

    Google Scholar 

  • Forot, M., Laurent, P.L., Grenier, I.A., Gouiffès, C., Lebrun, F., 2008. Polarization of the Crab pulsar and nebula as observed by the INTEGRAL/IBIS telescope. ApJ, 688(1): L29–L32. [doi:10.1086/593974]

    Article  Google Scholar 

  • Gould, D.M., Lyne, A.G., 1998. Multifrequency polarimetry of 300 radio pulsars. Mon. Not. R. Astr. Soc., 301(1): 235–260. [doi:10.1046/j.1365-8711.1998.02018.x]

    Article  Google Scholar 

  • Han, J.L., Demorest, P.B., van Straten, W., Lyne, A.G., 2009. Polarization observations of 100 pulsars at 774 MHz by the GREEN BANK telescope. ApJS, 181(2):557–571. [doi:10.1088/0067-0049/181/2/557]

    Article  Google Scholar 

  • Horváth, G., Varju, D., 1963. Polarized Light in Animal Vision: Polarization Patterns in Nature. Springer, Heidelberg, Germany, p.2–25.

    Google Scholar 

  • Hughes, J.P., Long, K.S., Novick, R., 1984. A search for X-ray polarization in comic X-ray sources. ApJ, 280: 255–258. [doi:10.1086/161992]

    Article  Google Scholar 

  • Johnston, S., Hobbs, G., Vigeland, S., Kramer, M., Weisberg, J.M., Lyne, A.G., 2005. Evidence for alignment of the rotation and vectors in pulsars. Mon. Not. R. Astr. Soc., 364(4):1397–1412. [doi:10.1111/j.1365-2966.2005.09669. x]

    Article  Google Scholar 

  • Jones, D.H.P., Smith, F.G., Wallace, P.T., 1981. Linear polarization of optical radiation from the Crab pulsar. Mon. Not. R. Astr. Soc., 196:943–953.

    Google Scholar 

  • Karastergiou, A., Johnston, S., 2007. An empirical model for the beams of radio pulsars. Mon. Not. R. Astr. Soc., 380(4):1678–1684. [doi:10.1111/j.1365-2966.2007.12237.x]

    Article  Google Scholar 

  • Krawczynski, H., Garson, A.III, Guo, Q., Baring, M.G., Ghosh, P., Beilicke, M., Lee, K., 2011. Scientific prospects for hard X-ray polarimetry. Astr. Phys., 34(7):550–567. [doi:10.1016/j.astropartphys.2010.12.001]

    Article  Google Scholar 

  • Labhart, T., 1988. Polarization-opponent interneurons in the insect visual system. Nature, 331(6155):435–437. [doi:10. 1038/331435a0]

    Article  Google Scholar 

  • Lyne, A.G., Manchester, R.N., 1988. The shape of pulsar radio beams. J. Mon. Not. R. Astr. Soc., 234:477–508.

    Google Scholar 

  • Manchester, R.N., Johnston, S., 1995. Polarization properties of two pulsars. ApJ, 441(2):L65–L68. [doi:10.1086/187791]

    Article  Google Scholar 

  • Manchester, R.N., Taylor, J.H., 1977. Pulsars. WH Freeman, San Francisco, CA, USA, p.84–90.

    Google Scholar 

  • McKinnon, M.M., Stinebring, D.R., 1998. A statistical model for the orthogonal modes of polarization in pulsar radio emission. ApJ, 502(2):883–897. [doi:10.1086/305924]

    Article  Google Scholar 

  • McKinnon, M.M., Stinebring, D.R., 2000. The modeseparated pulse profiles of pulsar radio emission. ApJ, 529(1):435–446. [doi:10.1086/308264]

    Article  Google Scholar 

  • McMaster, W.H., 1954. Polarization and the Stokes parameters. Am. J. Phys., 22(6):351. [doi:10.1119/1.1933744]

    Article  MATH  Google Scholar 

  • Mizuno, T., Arimoto, M., Axelsson, M., Bjornsson, C.I., Bogaert, G., Carlson, P., Craig, W., Fukazawa, Y., Gunji, S., Hjalmarsdotter, L., et al., 2007. High Sensitivity Balloon-Borne Hard X-Ray/Soft Gamma-Ray Polarimeter PoGOLite. IEEE Nuclear Science Symp. Conf. Record, 4:2538–2544. [doi:10.1109/NSSMIC.2007.4436669]

    Google Scholar 

  • Morris, D., Graham, D.A., Sieber, W., Bartel, N., Thomasson, P., 1981. Observations of the polarization of average pulsar profiles at high frequency. Astron. Astrophys. Suppl. Ser., 46:421–472.

    Google Scholar 

  • Pearce, M., Florén, H.G., Jackson, M., Kamae, T., Kiss, M., Kole, M., Moretti, E., Olofsson, G., Rydström, S., Strömberg, J.E., et al., 2012. Balloon-Borne Hard X-Ray Polarimetry with PoGOLite. arXiv preprint, arXiv:1211. 5094.

    Google Scholar 

  • Petrova, S.A., 2001. On the origin of orthogonal polarization modes in pulsar radio emission. A&A, 378(3):883–897. [doi:10.1051/0004-6361:20011297]

    Article  MathSciNet  Google Scholar 

  • Radhakrishnan, V., Cooke, D.J., 1969. Magnetic poles and the polarization structure of pulsar radiation. A&A, 3:225.

    Google Scholar 

  • Sala, J., Urruela, A., Villares, X., Estalella, R., Paredes, J.M., 2004. Feasibility Study for a Spacecraft Navigation System Relying on Pulsar Timing Information. Report No. ARIADNA Study 03/4202, Department of Signal Theory and Communications, Universitat Politècnica de Catalunya, Spain.

    Google Scholar 

  • Silver, E.H., Kestenbaum, H.L., Long, K.S., Novick, R., Wolff, R.S., Weisskopf, M.C., 1978. Search for X-ray polarization in the Crab pulsar. ApJ, 225:221–225. [doi:10. 1086/156485]

    Article  Google Scholar 

  • Slowikowska, A., Kanbach, G., Kramer, M., Stefanescu, A., 2009. Optical polarization of the Crab pulsar: precision measurements and comparison to the radio emission. Mon. Not. R. Astr. Soc., 397(1):103–123. [doi:10.1111/j.1365-2966.2009.14935.x]

    Article  Google Scholar 

  • Smith, F.G., Jones, D.H.P., Dick, J.S.B., Pike, C.D., 1988. The optical polarization of the Crab pulsar. Mon. Not. R. Astr. Soc., 233(2):305–319.

    Google Scholar 

  • Weisskopf, M.C., Silver, E.H., Kestenbaum, H.L., Long, K.S., Novick, R., 1978. A precision measurement of the X-ray polarization of the Crab nebula without pulsar contamination. ApJ, 220:L117–L121. [doi:10.1086/182648]

    Article  Google Scholar 

  • Zhao, K.C., Chu, J.K., Wang, T.C., Zhang, Q., 2009. A novel angle algorithm of polarization sensor for navigation. IEEE Trans. Instrum. Meas., 58(8):2791–2796. [doi:10.1109/TIM.2009.2016299]

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nan Luo.

Additional information

Project supported by the National Natural Science Foundation of China (No. 61172318) and the Fundamental Research Funds for the Central Universities, China (Nos. K5051302015 and K5051302040)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luo, N., Xu, Lp., Zhang, H. et al. Feasibility analysis for attitude estimation based on pulsar polarization measurement. J. Zhejiang Univ. - Sci. C 14, 425–432 (2013). https://doi.org/10.1631/jzus.C1200291

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.C1200291

Key words

CLC number

Navigation