Abstract
One of the important characteristics of pulsar radiation is polarization. It is considered not only as a probe for recognizing the structure of a magnetic field, but also as a lighthouse for estimating spacecraft attitude via orientation information between the pulsar and the detector. Although polarization of a pulsar has been studied for decades, until recently applications to determination of spacecraft attitude have been seldom reported. This paper deals with analysis of the feasibility of applying polarization information to attitude estimation. The stability factor (SFR) and observation fluctuation factor (OFR) are introduced to analyze the stability of a pulsar’s polarized position angle. Based on European Pulsar Network (EPN) data, several simulated instances are used to demonstrate that the accuracy requirement of attitude determination can be met via polarization measurement. The SFR of a pulsar is evaluated using simulated polarization data, and the OFR is used to analyze the relationship between fluctuation extent and observation time. Simulation results show that the polarized measurement of candidate pulsars PSR B0470-28 and PSR B2319+60 reaches the specification for attitude determination.
Similar content being viewed by others
References
Bernhardt, M.G., Becher, W., Prinz, T., Breithuth, F.M., Walter, U., 2011. Autonomous Spacecraft Navigation Based on Pulsar Timing Information. 2nd ICST, p.1–4. [doi:10.1109/ICSpT.2011.6064649]
Blaskiewicz, M., Cordes, J.M., Wasserman, I., 1991. A relativistic model of pulsar polarization. ApJ, 370:643–669. [doi:10.1086/169850]
Camilo, F., Reynolds, J., Johnston, S., Halpern, J.P., Ransom, S.M., van Straten, W., 2007. Polarized radio emission from the magnetar XTE J1810-197. ApJ, 659(1):L37–L40. [doi:10.1086/516630]
Chu, J.K., Zhao, K.C., Zhang, Q., Wang, T.C., 2008. Construction and performance test of a novel polarization sensor for navigation. Sens. Actuat. A, 148(1):75–82. [doi:10.1016/j.sna.2008.07.016]
Dean, A.J., Clark, D.J., Stephen, J.B., McBride, V.A., Bassano, A., Bird, A.J., Hill, A.B., Shaw, S.E., Ubertini, P., 2008. Polarized gamma-ray emission from the Crab. Science, 321(5893):1183–1185. [doi:10.1126/science.1149056]
European Pulsar Network, 2006. Citing Electronic Sources of Information. Available from http://www.jb.man.ac.uk/~pulsar/Resources/epn/browser.html [Accessed on May 22, 2012].
Forot, M., Laurent, P.L., Grenier, I.A., Gouiffès, C., Lebrun, F., 2008. Polarization of the Crab pulsar and nebula as observed by the INTEGRAL/IBIS telescope. ApJ, 688(1): L29–L32. [doi:10.1086/593974]
Gould, D.M., Lyne, A.G., 1998. Multifrequency polarimetry of 300 radio pulsars. Mon. Not. R. Astr. Soc., 301(1): 235–260. [doi:10.1046/j.1365-8711.1998.02018.x]
Han, J.L., Demorest, P.B., van Straten, W., Lyne, A.G., 2009. Polarization observations of 100 pulsars at 774 MHz by the GREEN BANK telescope. ApJS, 181(2):557–571. [doi:10.1088/0067-0049/181/2/557]
Horváth, G., Varju, D., 1963. Polarized Light in Animal Vision: Polarization Patterns in Nature. Springer, Heidelberg, Germany, p.2–25.
Hughes, J.P., Long, K.S., Novick, R., 1984. A search for X-ray polarization in comic X-ray sources. ApJ, 280: 255–258. [doi:10.1086/161992]
Johnston, S., Hobbs, G., Vigeland, S., Kramer, M., Weisberg, J.M., Lyne, A.G., 2005. Evidence for alignment of the rotation and vectors in pulsars. Mon. Not. R. Astr. Soc., 364(4):1397–1412. [doi:10.1111/j.1365-2966.2005.09669. x]
Jones, D.H.P., Smith, F.G., Wallace, P.T., 1981. Linear polarization of optical radiation from the Crab pulsar. Mon. Not. R. Astr. Soc., 196:943–953.
Karastergiou, A., Johnston, S., 2007. An empirical model for the beams of radio pulsars. Mon. Not. R. Astr. Soc., 380(4):1678–1684. [doi:10.1111/j.1365-2966.2007.12237.x]
Krawczynski, H., Garson, A.III, Guo, Q., Baring, M.G., Ghosh, P., Beilicke, M., Lee, K., 2011. Scientific prospects for hard X-ray polarimetry. Astr. Phys., 34(7):550–567. [doi:10.1016/j.astropartphys.2010.12.001]
Labhart, T., 1988. Polarization-opponent interneurons in the insect visual system. Nature, 331(6155):435–437. [doi:10. 1038/331435a0]
Lyne, A.G., Manchester, R.N., 1988. The shape of pulsar radio beams. J. Mon. Not. R. Astr. Soc., 234:477–508.
Manchester, R.N., Johnston, S., 1995. Polarization properties of two pulsars. ApJ, 441(2):L65–L68. [doi:10.1086/187791]
Manchester, R.N., Taylor, J.H., 1977. Pulsars. WH Freeman, San Francisco, CA, USA, p.84–90.
McKinnon, M.M., Stinebring, D.R., 1998. A statistical model for the orthogonal modes of polarization in pulsar radio emission. ApJ, 502(2):883–897. [doi:10.1086/305924]
McKinnon, M.M., Stinebring, D.R., 2000. The modeseparated pulse profiles of pulsar radio emission. ApJ, 529(1):435–446. [doi:10.1086/308264]
McMaster, W.H., 1954. Polarization and the Stokes parameters. Am. J. Phys., 22(6):351. [doi:10.1119/1.1933744]
Mizuno, T., Arimoto, M., Axelsson, M., Bjornsson, C.I., Bogaert, G., Carlson, P., Craig, W., Fukazawa, Y., Gunji, S., Hjalmarsdotter, L., et al., 2007. High Sensitivity Balloon-Borne Hard X-Ray/Soft Gamma-Ray Polarimeter PoGOLite. IEEE Nuclear Science Symp. Conf. Record, 4:2538–2544. [doi:10.1109/NSSMIC.2007.4436669]
Morris, D., Graham, D.A., Sieber, W., Bartel, N., Thomasson, P., 1981. Observations of the polarization of average pulsar profiles at high frequency. Astron. Astrophys. Suppl. Ser., 46:421–472.
Pearce, M., Florén, H.G., Jackson, M., Kamae, T., Kiss, M., Kole, M., Moretti, E., Olofsson, G., Rydström, S., Strömberg, J.E., et al., 2012. Balloon-Borne Hard X-Ray Polarimetry with PoGOLite. arXiv preprint, arXiv:1211. 5094.
Petrova, S.A., 2001. On the origin of orthogonal polarization modes in pulsar radio emission. A&A, 378(3):883–897. [doi:10.1051/0004-6361:20011297]
Radhakrishnan, V., Cooke, D.J., 1969. Magnetic poles and the polarization structure of pulsar radiation. A&A, 3:225.
Sala, J., Urruela, A., Villares, X., Estalella, R., Paredes, J.M., 2004. Feasibility Study for a Spacecraft Navigation System Relying on Pulsar Timing Information. Report No. ARIADNA Study 03/4202, Department of Signal Theory and Communications, Universitat Politècnica de Catalunya, Spain.
Silver, E.H., Kestenbaum, H.L., Long, K.S., Novick, R., Wolff, R.S., Weisskopf, M.C., 1978. Search for X-ray polarization in the Crab pulsar. ApJ, 225:221–225. [doi:10. 1086/156485]
Slowikowska, A., Kanbach, G., Kramer, M., Stefanescu, A., 2009. Optical polarization of the Crab pulsar: precision measurements and comparison to the radio emission. Mon. Not. R. Astr. Soc., 397(1):103–123. [doi:10.1111/j.1365-2966.2009.14935.x]
Smith, F.G., Jones, D.H.P., Dick, J.S.B., Pike, C.D., 1988. The optical polarization of the Crab pulsar. Mon. Not. R. Astr. Soc., 233(2):305–319.
Weisskopf, M.C., Silver, E.H., Kestenbaum, H.L., Long, K.S., Novick, R., 1978. A precision measurement of the X-ray polarization of the Crab nebula without pulsar contamination. ApJ, 220:L117–L121. [doi:10.1086/182648]
Zhao, K.C., Chu, J.K., Wang, T.C., Zhang, Q., 2009. A novel angle algorithm of polarization sensor for navigation. IEEE Trans. Instrum. Meas., 58(8):2791–2796. [doi:10.1109/TIM.2009.2016299]
Author information
Authors and Affiliations
Corresponding author
Additional information
Project supported by the National Natural Science Foundation of China (No. 61172318) and the Fundamental Research Funds for the Central Universities, China (Nos. K5051302015 and K5051302040)
Rights and permissions
About this article
Cite this article
Luo, N., Xu, Lp., Zhang, H. et al. Feasibility analysis for attitude estimation based on pulsar polarization measurement. J. Zhejiang Univ. - Sci. C 14, 425–432 (2013). https://doi.org/10.1631/jzus.C1200291
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1631/jzus.C1200291