Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

A parallel and scalable digital architecture for training support vector machines

  • Published:
Journal of Zhejiang University SCIENCE C Aims and scope Submit manuscript

Abstract

To facilitate the application of support vector machines (SVMs) in embedded systems, we propose and test a parallel and scalable digital architecture based on the sequential minimal optimization (SMO) algorithm for training SVMs. By taking advantage of the mature and popular SMO algorithm, the numerical instability issues that may exist in traditional numerical algorithms are avoided. The error cache updating task, which dominates the computation time of the algorithm, is mapped into multiple processing units working in parallel. Experiment results show that using the proposed architecture, SVM training problems can be solved effectively with inexpensive fixed-point arithmetic and good scalability can be achieved. This architecture overcomes the drawbacks of the previously proposed SVM hardware that lacks the necessary flexibility for embedded applications, and thus is more suitable for embedded use, where scalability is an important concern.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anguita, D., Boni, A., Ridella, S., 2003. A digital architecture for support vector machines: theory, algorithm, and FPGA implementation. IEEE Trans. Neur. Networks, 14(5):993–1009. [doi:10.1109/TNN.2003.816033]

    Article  Google Scholar 

  • Anguita, D., Pischiutta, S., Ridella, S., Sterpi, D., 2006. Feed-forward support vector machine without multipliers. IEEE Trans. Neur. Networks, 17(5):1328–1331. [doi:10.1109/TNN.2006.877537]

    Article  Google Scholar 

  • Biasi, I., Boni, A., Zorat, A., 2005. A Reconfigurable Parallel Architecture for SVM Classification. Proc. IEEE Int. Joint Conf. on Neural Networks, p.2867–2872. [doi:10. 1109/IJCNN.2005.1556380]

  • Burges, C.J.C., 1998. A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Discov., 2(2):121–167. [doi:10.1023/A:1009715923555]

    Article  Google Scholar 

  • Catanzaro, B., Sundaram, N., Keutzer, K., 2008. Fast Support Vector Machine Training and Classification on Graphics Processors. Proc. 25th Int. Conf. on Machine Learning, p.104–111. [doi:10.1145/1390156.1390170]

  • Chen, S., Gibson, G.J., Cowan, C.F.N., Grant, P.M., 1990. Adaptive equalization of finite nonlinear channels using multilayer perceptrons. EURASIP Signal Process., 20(2): 107–119.

    Article  Google Scholar 

  • Choi, W.Y., Ahn, D., Pan, S.B., Chung, K.I., Chung, Y.W., Chung, S.H., 2006. SVM-based speaker verification system for match-on-card and its hardware implementation. ETRI J., 28(3):320–328. [doi:10.4218/etrij.06.0105.0022]

    Article  Google Scholar 

  • Frieß, T.T., Cristianini, N., Campbell, C., 1998. The Kernel-Adatron Algorithm: A Fast and Simple Learning Procedure for Support Vector Machines. Proc. 15th Int. Conf. on Machine Learning, p.188–196.

  • Graf, H.P., Cadambi, S., Durdanovic, I., Jakkula, V., Sankaradass, M., Cosatto, E., Chakradhar, S.T., 2008. A Massively Parallel Digital Learning Processor. 22nd Annual Conf. on Neural Information Processing Systems, p.529–536.

  • Keerthi, S.S., Shevade, S.K., Bhattacharyya, C., Murthy, K.R.K., 2001. Improvements to Platt’s SMO algorithm for SVM classifier design. Neur. Comput., 13(3):637–649. [doi:10.1162/089976601300014493]

    Article  MATH  Google Scholar 

  • Manikandan, J., Venkataramani, B., Avanthi, V., 2009. FPGA Implementation of Support Vector Machine Based Isolated Digit Recognition System. Proc. 22nd Int. Conf. on VLSI Design, p.347–352. [doi:10.1109/VLSI.Design.2009.23]

  • Platt, J.C., 1999. Fast Training of Support Vector Machines Using Sequential Minimal Optimization. In: Schölkopf, B., Burges, C., Smola, A. (Eds.), Advances in Kernel Methods: Support Vector Learning. MIT Press, Cambridge, MA, p.185–208.

    Google Scholar 

  • Schölkopf, B., Burges, C.J.C., Smola, A.J., 1999. Advances in Kernel Methods: Support Vector Learning. MIT Press, Cambridge, MA, p.1–16.

    Google Scholar 

  • Sebald, D.J., Bucklew, J.A., 2000. Support vector machine techniques for nonlinear equalization. IEEE Trans. Signal Process., 48(11):3217–3226. [doi:10.1109/78.875477]

    Article  Google Scholar 

  • Sun, Z., Zhang, L., Tang, E., 2005. An incremental learning method based on SVM for online sketchy shape recognition. LNCS, 3610:655–659. [doi:10.1007/11539087_82]

    Google Scholar 

  • Vapnik, V.N., 1998. Statistical Learning Theory. Wiley, New York, p.493–520.

    MATH  Google Scholar 

  • Wee, J.W., Lee, C.H., 2004. Concurrent support vector machine processor for disease diagnosis. LNCS, 3316:1129–1134. [doi:10.1007/b103766]

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai-bin Shen.

Additional information

Project (No. 60720106003) supported by the National Natural Science Foundation of China

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cao, Kk., Shen, Hb. & Chen, Hf. A parallel and scalable digital architecture for training support vector machines. J. Zhejiang Univ. - Sci. C 11, 620–628 (2010). https://doi.org/10.1631/jzus.C0910500

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.C0910500

Key words

CLC number

Navigation