摘要
目 的
1. 使用基于振动的损伤检测方法进行结构健康监测. 2. 基于材料力学性能评价提出一种新的结构健康监测方法.
创新点
1. 通过一个被称为损失函数 (LF) 的新指标描述材料粘弹性参数与振动参数之间的相关性. 2. 使用卷积神经网络 (CNN) 提取自动特征和损坏敏感性, 以评估结构状况.
方 法
1. 测量真实桥梁的振动响应. 2. 在频域中进行信号处理以揭示振动能量损失. 3. 基于深度学习和 CNN 对桥梁状况进行分类.
结 论
1. 在真实结构中总是会发生能量扩散. 2. 基于振动能量损失变化的 LF 评估, 可以对桥梁进行健康监测. 3. 基于深度学习的能量扩散评估是可实现的, 并且在多个实际桥梁中具有较高的可实施性.
References
Anitescu C, Atroshchenko E, Alajlan N, et al., 2019. Artificial neural network methods for the solution of second order boundary value problems. Computers, Materials & Continua, 59(1):345–359. https://doi.org/10.32604/cmc.2019.06641
Gao YQ, Mosalam KM, 2018. Deep transfer learning for image-based structural damage recognition. Computer-aided Civil and Infrastructure Engineering, 33(9):748–768. https://doi.org/10.1111/mice.12363
Guo HW, Zhuang XY, Rabczuk T, 2019. A deep collocation method for the bending analysis of Kirchhoff plate. Computers, Materials & Continua, 59(2):433–456. https://doi.org/10.32604/cmc.2019.06660
Nguyen TD, Nguyen HQ, Pham TB, et al., 2021. A novel proposal in using viscoelastic model for bridge condition assessment. In: Bui TQ, Cuong LT, Khatir S (Eds.), Structural Health Monitoring and Engineering Structures. Springer, Singapore. https://doi.org/10.1007/978-981-16-0945-9_27
Samaniego E, Anitescu C, Goswami S, et al., 2020. An energy approach to the solution of partial differential equations in computational mechanics via machine learning: concepts, implementation and applications. Computer Methods in Applied Mechanics and Engineering, 362:112790. https://doi.org/10.1016/j.cma.2019.112790
Wang ZL, Cha YJ, 2021. Unsupervised deep learning approach using a deep auto-encoder with a one-class support vector machine to detect damage. Structural Health Monitoring, 20(1):406–425. https://doi.org/10.1177/1475921720934051
Yu YJ, Cao H, Yan XY, et al., 2020. Defect identification of wind turbine blades based on defect semantic features with transfer feature extractor. Neurocomputing, 376:1–9. https://doi.org/10.1016/j.neucom.2019.09.071
Author information
Authors and Affiliations
Corresponding author
Additional information
Contributors
Nhi NGO-KIEU designed the research. Thao NGUYEN-DA, Toan PHAM-BAO, and Tam NGUYEN-NHAT processed the data. Toan PHAM-BAO wrote the first draft of the manuscript. Nhi NGO-KIEU helped to organize the manuscript. Hung NGUYEN-XUAN revised and edited the final version.
Conflict of interest
Nhi NGO-KIEU, Thao NGUYEN-DA, Toan PHAM-BAO, Tam NGUYEN-NHAT, and Hung NGUYEN-XUAN declare that they have no conflict of interest.
Electronic supplementary materials
Rights and permissions
About this article
Cite this article
Ngo-Kieu, N., Nguyen-Da, T., Pham-Bao, T. et al. Deep learning-based signal processing for evaluating energy dispersal in bridge structures. J. Zhejiang Univ. Sci. A 22, 672–680 (2021). https://doi.org/10.1631/jzus.A2000414
Published:
Issue Date:
DOI: https://doi.org/10.1631/jzus.A2000414