Abstract
As a versatile tool for trapping and manipulating neutral particles, optical tweezers have been studied in a broad range of fields such as molecular biology, nanotechnology, and experimentally physics since Arthur Ashkin pioneered the field in the early 1970s. By levitating the “sensor” with a laser beam instead of adhering it to solid components, excellent environmental decoupling is achieved. Furthermore, unlike levitating particles in liquid or air, optical tweezers operating in vacuum are isolated from environmental thermal noise, thus eliminating the primary source of dissipation present for most inertial sensors. This attracted great attention in both fundamental and applied physics. In this paper we review the history and the basic concepts of optical tweezers in vacuum and provide an overall understanding of the field.
Similar content being viewed by others
References
Ahn J, Xu ZJ, Bang J, et al., 2018. Optically levitated nanodumbbell torsion balance and GHz nanomechanical rotor. Phys Rev Lett, 121:033603. https://doi.org/10.1103/PhysRevLett.121.033603
Appel J, Windpassinger PJ, Oblak D, et al., 2009. Mesoscopic atomic entanglement for precision measurements beyond the standard quantum limit. Proc Nat Acad Sci USA, 106(27):10960–10965. https://doi.org/10.1073/pnas.0901550106
Arita Y, Mazilu M, Dholakia K, et al., 2013. Laser-induced rotation and cooling of a trapped microgyroscope in vacuum. Nat Commun, 4:2374. https://doi.org/10.1038/ncomms3374
Arita Y, Chen MZ, Wright EM, et al., 2017. Dynamics of a levitated microparticle in vacuum trapped by a perfect vortex beam: three-dimensional motion around a complex optical potential. J Opt Soc Am B, 34(6):C14–C19. https://doi.org/10.1364/JOSAB.34.000C14
Ashkin A, 1970. Acceleration and trapping of particles by radiation pressure. Phys Rev Lett, 24(4):156–159. https://doi.org/10.1103/PhysRevLett.24.156
Ashkin A, 1992. Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime. Biophys J, 61(2):569–582. https://doi.org/10.1016/S0006-3495(92)81860-X
Ashkin A, 2000. History of optical trapping and manipulation of small-neutral particle, atoms, and molecules. IEEE J Sel Top Quant Electron, 6(6):841–856. https://doi.org/10.1109/2944.902132
Ashkin A, Dziedzic JM, 1971. Optical levitation by radiation pressure. Appl Phys Lett, 19(8):283–285. https://doi.org/10.1063/1.1653919
Ashkin A, Dziedzic JM, 1976. Optical levitation in high vacuum. Appl Phys Lett, 28(6):333–335. https://doi.org/10.1063/1.88748
Ashkin A, Dziedzic JM, 1977. Feedback stabilization of optically levitated particles. Appl Phys Lett, 30(4):202–204. https://doi.org/10.1063/1.89335
Ashkin A, Dziedzic JM, Bjorkholm JE, et al., 1986. Observation of a single-beam gradient force optical trap for dielectric particles. Opt Lett, 11(5):288–290. https://doi.org/10.1364/OL.11.000288
Ashkin A, Schütze K, Dziedzic JM, et al., 1990. Force generation of organelle transport measure. in vivo by an infrared laser trap. Nature, 348(6299):346–348. https://doi.org/10.1038/348346a0
Barker PF, 2010. Doppler cooling a microsphere. Phys Rev Lett, 105:073002. https://doi.org/10.1103/PhysRevLett.105.073002
Block SM, Goldstein LSB, Schnapp BJ, 1990. Bead movement by single kinesin molecules studied with optical tweezers. Nature, 348(6299):348–352. https://doi.org/10.1038/348348a0
Bohren CF, Huffman DR, 1983. Absorption and Scattering of Light by Small Particles. John Wiley & Sons, New York.
Braginskiĭ VB, Manukin AB, 1967. Ponderomotive effects of electromagnetic radiation. Sov Phys J Exper Theor Phys, 25(4):653–655.
Braginskiĭ VB, Manukin AB, Tikhonov MY, 1970. Investigation of dissipative ponderomotive effects of electromagnetic radiation. Sov J Exp Theor Phys, 31:829.
Bui AAM, Stilgoe AB, Lenton ICD, et al., 2017. Theory and practice of simulation of optical tweezers. J Quant Spectrosc Rad Transf 195:66–75. https://doi.org/10.1016/j.jqsrt.2016.12.026
Bustamante C, Erie DA, Keller D, 1994. Biochemical and structural applications of scanning force microscopy. Curr Opin Struct Biol, 4(5):750–760. https://doi.org/10.1016/S0959-440X(94)90175-9
Butts DLG, 2008. Development of a Light Force Accelerometer. MS Thesis, Massachusetts Institute of Technology, Massachusetts, USA.
Callegari A, Mijalkov M, Gököz AB, et al., 2015. Computational toolbox for optical tweezers in geometrical optics. J Opt Soc Am B, 32:B11–B19. https://doi.org/10.1364/JOSAB.32.000B11
Català F, Marsà F, Montes-Usategui M, et al., 2017. Influence of experimental parameters on the laser heating of an optical trap. Sci Rep, 7(1):16052. https://doi.org/10.1038/s41598-017-15904-6
Chan J, Alegre TP, Safavi-Naeini AH, et al, 2011. Laser cooling of a nanomechanical oscillator into its quantum ground state. Nature, 478(7367):89–92. https://doi.org/10.1038/nature10461
Chang DE, Regal CA, Papp SB, et al., 2010. Cavity opto-mechanics using an optically levitated nanosphere. Proc Nat Acad Sci USA, 107(3):1005–1010. https://doi.org/10.1073/pnas.0912969107
Chang YR, Hsu L, Chi S, 2006. Optical trapping of a spherically symmetric sphere in the ray-optics regime: a model for optical tweezers upon cells. Appl Opt, 45(16):3885–3892. https://doi.org/10.1364/AO.45.003885
Chen MZ, Mazilu M, Arita Y, et al., 2013. Dynamics of microparticles trapped in a perfect vortex beam. Opt Lett, 38(22):4919–4922. https://doi.org/10.1364/OL.38.004919
Chen MZ, Mazilu M, Arita Y, et al., 2014. Optical trapping with a perfect vortex beam. In: Optical Trapping and Optical Micromanipulation XI. International Society for Optics and Photonics, 9164:91640K.
Chen MZ, Mazilu M, Arita Y, et al., 2015. Creating and probing of a perfect vortex in situ with an optically trapped particle. Opt Rev, 22(1):162–165. https://doi.org/10.1007/s10043-015-0031-7
Chu S, Hollberg L, Bjorkholm JE, et al., 1985. Three-dimensional viscous confinement and cooling of atoms by resonance radiation pressure. Phys Rev Lett, 55(1):48–51. https://doi.org/10.1103/PhysRevLett.55.48
Ciminelli C, Conteduca D, Dell’Olio F, et al., 2017. Photonic, plasmonic and hybrid nanotweezers for single nanoparticle trapping and manipulation. 19th Int Conf on Transparent Optical Networks.
Clercx HJH, Schram PPJM, 1992. Brownian particles in shear flow and harmonic potentials: a study of long-time tails. Phys Rev A, 46(4):1942–1950. https://doi.org/10.1103/PhysRevA.46.1942
Cohadon PF, Heidmann A, Pinard M, 1999. Cooling of a mirror by radiation pressure. Phys Rev Lett, 83(16):3174–3177. https://doi.org/10.1103/PhysRevLett.83.3174
Cohen L, 1998. The generalization of the Wiener-Khinchin theorem. Proc IEEE Int Conf on Acoustics, Speech and Signal Processing, p.1577–1580. https://doi.org/10.1109/ICASSP.1998.681753
Corbitt T, Chen YB, Innerhofer E, et al., 2007. An all-optical trap for a gram-scale mirror. Phys Rev Lett, 98:150802. https://doi.org/10.1103/PhysRevLett.98.150802
Davis KB, Mewes M, Andrews MR, et al., 1995. Bose-Einstein condensation in a gas of sodium atoms. Phys Rev Lett, 75(22):3969–3973. https://doi.org/10.1103/PhysRevLett.75.3969
Diehl R, Hebestreit E, René R, et al., 2018. Optical levitation and feedback cooling of a nanoparticle at subwavelength distances from a membrane. Phys Rev A, 98(1):013851. https://doi.org/10.1103/PhysRevA.98.013851
Dienerowitz M, Mazilu M, Dholakia K, et al., 2008. Optical manipulation of nanoparticles: a review. J Nanophoton, 2:21875. https://doi.org/10.1117/1.2992045
Fu ZH, She X, Li N, et al., 2018a. A chip of pulse-laserassisted dual-beam fiber-optic trap. Progress in Electromagnetics Research Symp, p.86–91. https://doi.org/10.23919/PIERS.2018.8597625
Fu ZH, She X, Li N, et al., 2018b. Launch and capture of a single particle in a pulse-laser-assisted dual-beam fiberoptic trap. Opt Commun, 417:103–109. https://doi.org/10.1016/j.optcom.2018.02.040
Genes C, Vitali D, Tombesi P, et al., 2008. Ground-state cooling of a micromechanical oscillator: comparing cold damping and cavity-assisted cooling schemes. Phys Rev A, 77(3):033804. https://doi.org/10.1103/PhysRevA.77.033804
Geraci AA, Smullin SJ, Weld DM, et al., 2008. Improved constraints on non-Newtonian forces at 10 microns. Phys Rev D, 78:022002. https://doi.org/10.1103/PhysRevD.78.022002
Geraci AA, Papp SB, Kitching J, 2010. Short-range force detection using optically cooled levitated microspheres. Phys Rev Lett, 105:101101. https://doi.org/10.1103/PhysRevLett.105.101101
Gieseler J, 2014. Dynamics of Optically Levitated Nanoparticles in High Vacuum. PhD Thesis, Universitat Politècnica de Catalunya.
Gieseler J, Deutsch B, Quidant R, et al., 2012. Subkelvin parametric feedback cooling of a laser-trapped nanoparticle. Phys Rev Lett, 109(10):103603. https://doi.org/10.1103/PhysRevLett.109.103603
Gieseler J, Novotny L, Quidant R, 2013. Thermal nonlinearities in a nanomechanical oscillator. Nat Phys, 9(12):806–810. https://doi.org/10.1038/nphys2798
Gong ZY, Pan YL, Videen G, et al., 2018. Optical trapping and manipulation of single particles in air: principles, technical details, and applications. J Quant Spectrosc Rad Transf, 214:94–119. https://doi.org/10.1016/j.jqsrt.2018.04.027
Gouesbet G, 2010. T-matrix formulation and generalized Lorenz-Mie theories in spherical coordinates. Opt Commun, 283(4):517–521. https://doi.org/10.1016/j.optcom.2009.10.092
Gouesbet G, 2019. Generalized Lorenz-Mie theories and mechanical effects of laser light, on the occasion of Arthur Ashkin’s receipt on the 2018 Nobel prize in physics for his pioneering work in optical levitation and manipulation: a review. J Quant Spectros Rad Transf, 225:258–277. https://doi.org/10.1016/j.jqsrt.2018.12.015
Gouesbet G, Gréhan G, 2017. Special cases of axisymmetric and Gaussian beams. In: Generalized Lorenz-Mie Theories (2nd Ed.). Springer, Cham, p.268–270. https://doi.org/10.1007/978-3-319-46873-0_6
Gouesbet G, Lock JA, 2015. On the electromagnetic scattering of arbitrary shaped beams by arbitrary shaped particles: a review. J Quant Spectrosc Rad Transf, 162:31–49. https://doi.org/10.1016/jjqsrt.2014.11.017
Gouesbet G, Maheu B, Gréhan G, 1988. Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation. J Opt Soc Am A, 5(9):1427–1443. https://doi.org/10.1364/JOSAA.5.001427
Grass D, 2013. Optical Trapping and Transport of Nanoparticles with Hollow Core Photonic Crystal Fibers. MS Thesis, University of Vienna.
Grier DG, 2003. A revolution in optical manipulation. Nature, 424(6950):810–816. https://doi.org/10.1038/nature01935
Gröeblacher S, Gigan S, Böehm HR, et al., 2008. Radiation-pressure self-cooling of a micromirror in a cryogenic environment. Europhys Lett, 81(5):54003. https://doi.org/10.1209/0295-5075/81/54003
Hänsch TW, Schawlow AL, 1975. Cooling of gases by laser radiation. Opt Commun, 13(1):68–69. https://doi.org/10.1016/0030-4018(75)90159-5
Harada Y, Asakura T, 1996. Radiation forces on a dielectric sphere in the Rayleigh scattering regime. Opt Comm, 124(5–6):529–541. https://doi.org/10.1016/0030-4018(95)00753-9
Hebestreit E, Frimmer M, Reimann R, et al., 2018. Measuring gravity with optically levitated nanoparticles. Advanced Photonics Congress. https://doi.org/10.1364/NOMA.2018.NoTu4J.2
Hoang TM, Ahn J, Bang J, et al., 2016. Electron spin control of optically levitated nanodiamonds in vacuum. Nat Commun, 7:12250. https://doi.org/10.1038/ncomms12250
Jain V, Gieseler J, Moritz C, et al., 2016a. Direct measurement of photon recoil from a levitated nanoparticle. Phys Rev Lett, 116(24):243601. https://doi.org/10.1103/PhysRevLett.116.243601
Jain V, Tebbenjohanns F, Novotny L, 2016b. Microkelvin control of an optically levitated nanoparticle. Front Opt. https://doi.org/10.1364/FIO.2016.FF5B.2
Juan ML, Righini M, Quidant R, 2011. Plasmon nano-optical tweezers. Nat Photon, 5(6):349–356. https://doi.org/10.1038/nphoton.2011.56
Kajorndejnukul V, Ding WQ, Sukhov S, et al., 2013. Linear momentum increase and negative optical forces at dielectric interface. Nat Photon, 7(10):787–790. https://doi.org/10.1038/nphoton.2013.192
Kapner DJ, Cook TS, Adelberger EG, et al., 2007. Tests of the gravitational inverse-square law below the dark-energy length scale. Phys Rev Lett, 98(2):021101. https://doi.org/10.1103/PhysRevLett.98.021101
Kepler J, 1619. De cometis libelli tres, typis Andreae Apergeri, sumptibus Sebastiani Mylii bibliopolae augustani. Avgvstae Vindelicorum.
Kiesel N, Blaser F, Delić U, et al., 2013. Cavity cooling of an optically levitated submicron particle. Proc Nat Acad Sci USA, 110(35):14180–14185. https://doi.org/10.1073/pnas.1309167110
Kirstine BS, Henrik F, 2004. Power spectrum analysis for optical tweezers. Rev Sci Instrum, 75(3):594–612. https://doi.org/10.1063/1.1645654
Lebedev P 1901. Untersuchungen über die druckkräfte des lichtes. Ann Phys, 6:433–458 (in German).
Lett PD, Watts RN, Westbrook CI, et al., 1988. Observation of atoms laser cooled below the Doppler limit. Phys Rev Lett, 61(2):169–172. https://doi.org/10.1103/PhysRevLett.61.169
Li TC, 2013. Fundamental Tests of Physics with Optically Trapped Microspheres. Springer Science & Business Media, New York.
Li TC, Kheifets S, Medellin D, et al., 2010. Measurement of the instantaneous velocity of a Brownian particle. Science, 328(5986):1673–1675. https://doi.org/10.1126/science.1189403
Li TC, Kheifets S, Raizen MG, 2011. Millikelvin cooling of an optically trapped microsphere in vacuum. Nat Phys, 7(7):527–530. https://doi.org/10.1038/nphys1952
Loke VLY, Nieminen TA, Heckenberg NR, et al., 2001. T-matrix calculation via discrete dipole approximation, point matching and exploiting symmetry. J Quant Spectrosc Rad Transf, 110(14–16):1460–1471. https://doi.org/10.1016/jjqsrt.2009.01.013
Ludlow AD, Boyd MM, Ye J, et al., 2015. Optical atomic clocks. Rev Mod Phys, 87(2):637–701. https://doi.org/10.1103/RevModPhys.87.637
Mackowski DW, 2002. Discrete dipole moment method for calculation of th. T matrix for nonspherical particles. J Opt Soc Am A, 19(5):881–893. https://doi.org/10.1364/JOSAA.19.000881
Mao H, Arias-Gonzalez JR, Smith SB, et al, 2005. Temperature control methods in a laser tweezers system. Biophys J, 89(2):1308–1316. https://doi.org/10.1529/biophysj.104.054536
Maragò OM, Jones PH, Gucciardi P, et al., 2013. Optical trapping and manipulation of nanostructures. Nat Nanotechnol, 8(11):807–819. https://doi.org/10.1038/nnano.2013.208
Marquardt F, Chen JP, Clerk AA, et al., 2007. Quantum theory of cavity-assisted sideband cooling of mechanical motion. Phys Rev Lett, 99:093902. https://doi.org/10.1103/PhysRevLett.99.093902
Mazilu M, Arita Y, Vettenburg T, et al., 2016. Orbital-angular-momentum transfer to optically levitated micro-particles in vacuum. Phys Rev A, 94(5):053821. https://doi.org/10.1103/PhysRevA.94.053821
Mestres P, Berthelot J, Spasenović M, et al., 2015. Cooling and manipulation of a levitated nanoparticle with an optical fiber trap. Appl Phys Lett, 107(15):151102. https://doi.org/10.1063/1.4933180
Miao HX, Srinivasan K, Aksyuk V, 2012. A microelectromechanically controlled cavity optomechanical sensing system. New J Phys, 14:075015. https://doi.org/10.1088/1367-2630/14/7/075015
Millen J, Deesuwan T, Barker P, et al., 2014. Nanoscale temperature measurements using non-equilibrium Brownian dynamics of a levitated nanosphere. Nat Nanotechnol, 9(6):425–429. https://doi.org/10.1038/nnano.2014.82
Monteiro F, Ghosh S, Fine AG, et al., 2017. Optical levitation of 10-ng spheres with nano-g acceleration sensitivity. Phys Rev A, 96:063841. https://doi.org/10.1103/PhysRevA.96.063841
Moore DC, Rider AD, Gratta G, 2014. Search for millicharged particles using optically levitated microspheres. Phys Rev Lett, 113(25):251801. https://doi.org/10.1103/PhysRevLett.113.251801
Moser J, Güttinger J, Eichler A, et al., 2013. Ultrasensitive force detection with a nanotube mechanical resonator. Nat Nanotechnol, 8(7):493–496. https://doi.org/10.1038/nnano.2013.97
Neuman KC, Block SM, 2004. Optical trapping. Rev Sci Instrum, 75(9):2787–2809. https://doi.org/10.1063/1.1785844
Nichols EF, Hull GF, 1903. The pressure due to radiation. Astrophys J, 17(5):315–351. https://doi.org/10.1086/141035
Nieminen TA, Rubinsztein-Dunlop H, Heckenberg NR, 2003a. Calculation of the T-matrix: general considerations and application of the point-matching method. J Quant Spectrosc Rad Transf, 79–80:1019–1029. https://doi.org/10.1016/S0022-4073(02)00336-9
Nieminen TA, Rubinsztein-Dunlop H, Heckenberg NR, 2003b. Multipole expansion of strongly focussed laser beams. J Quant Spectrosc Rad Transf, 79–80:1005–1017. https://doi.org/10.1016/S0022-4073(02)00335-7
Nieminen TA, Loke VLY, Stilgoe AB, et al., 2007. Optical tweezers computational toolbox. J Opt A, 9(8):S196–S203. https://doi.org/10.1088/1464-4258/9/8/S12
Nieminen TA, Du Preez-Wilkinson N, Stilgoe AB, et al., 2014. Optical tweezers: theory and modelling. J Quant Spectrosc Rad Transf, 146:59–80. https://doi.org/10.1016/j.jqsrt.2014.04.003
Ostrovsky AS, Rickenstorff-Parrao C, Víctor A, 2013. Generation of the “perfect” optical vortex using a liquid-crystal spatial light modulator. Opt Lett, 38(4):534–536. https://doi.org/10.1364/OL.38.000534
Park YS, Wang HL, 2009. Resolved-sideband and cryogenic cooling of an optomechanical resonator. Nay Phys, 5:489–493. https://doi.org/10.1038/nphys1303
Peterman EJG, Gittes F, Schmidt CF, 2003. Laser-induced heating in optical traps. Biophys J, 84(2):1308–1316. https://doi.org/10.1016/S0006-3495(03)74946-7
Peters A, Chung KY, Chu S, 2001. High-precision gravity measurements using atom interferometry. Metrologia, 38(1):25–61. https://doi.org/10.1088/0026-1394/38/1/4
Polimeno P, Magazzù A, Iatì MA, et al., 2018. Optical tweezers and their applications. J Quant Spectrosc Rad Transf, 218:131–150. https://doi.org/10.1016/j.jqsrt.2018.07.013
Ranjit G, Atherton DP, Stutz JH, et al., 2015. Attonewton force detection using microspheres in a dual-beam optical trap in high vacuum. Phys Rev A, 91(5):051805. https://doi.org/10.1103/PhysRevA.91.051805
Ranjit G, Cunningham M, Casey K, et al., 2016. Zeptonewton force sensing with nanospheres in an optical lattice. Phys Rev A, 93(5):053801. https://doi.org/10.1103/PhysRevA.93.053801
Reimann R, Doderer M, Hebestreit E, et al., 2018. GHz rotation of an optically trapped nanoparticle in vacuum. Phys Rev Lett, 121(3):033602. https://doi.org/10.1103/PhysRevLett.121.033602
Ren KF, Gréhan G, Gouesbet G, 1996. Prediction of reverse radiation pressure by generalized Lorenz-Mie theory. Appl Opt, 35(15):2702–2710. https://doi.org/10.1364/AO.35.002702
Rider AD, Blakemore CP, Gratta GG, et al., 2018. Single-beam dielectric-microsphere trapping with optical heterodyne detection. Phys Rev A, 97:013842. https://doi.org/10.1103/PhysRevA.97.013842
Rocheleau T, Ndukum T, Macklin C, et al., 2010. Preparation and detection of a mechanical resonator near the ground state of motion. Nature, 463(7277):72–75. https://doi.org/10.1038/nature08681
Romero-Isart O, Pflanzer AC, Juan ML, et al., 2011. Optically levitating dielectrics in the quantum regime: theory and protocols. Phys Rev A, 83:013803. https://doi.org/10.1103/PhysRevA.83.013803
Romero-Isart O, Clemente L, Navau C, et al., 2012. Quantum magnetomechanics with levitating superconducting microspheres. Phys Rev Lett, 109(14):147205. https://doi.org/10.1103/PhysRevLett.109.147205
Rugar D, Budakian R, Mamin HJ, et al., 2004. Single spin detection by magnetic resonance force microscopy. Nature, 430(6997):329–332. https://doi.org/10.1038/nature02658
Skelton SE, Sergides M, Memoli G, et al., 2012. Trapping and deformation of microbubbles in a dual-beam fibre-optic trap. J Opt, 14(7):075706. https://doi.org/10.1088/2040-8978/14/7/075706
Sukhov S, Dogariu A, 2017. Non-conservative optical forces. Rep Prog Phys, 80(11):112001. https://doi.org/10.1088/1361-6633/aa834e
Summers MD, Burnham DR, McGloin D, 2008. Trapping solid aerosols with optical tweezers: a comparison between gas and liquid phase optical traps. Opt Expr, 16(11):7739–7747. https://doi.org/10.1364/OE.16.007739
Swartzlander GAJr, Peterson TJ, Artusio-Glimpse A, et al., 2010. Stable optical lift. Nat Photon, 5(1):48–51. https://doi.org/10.1038/nphoton.2010.266
Teufel JD, Donner T, Li DL, et al, 2011. Sideband cooling of micromechanical motion to the quantum ground state. Nature, 475(7356):359–363. https://doi.org/10.1038/nature10261
Torki A, 2016. Mechanical Transfer of Optically Trapped Nanoparticle. MS Thesis, KTH Royal Institute of Technology.
Townes CH, 1999. How the Laser Happened: Adventures of a Scientist. Oxford University Press, New York
Vovrosh J, Rashid M, Hempston D, et al., 2017. Parametric feedback cooling of levitated optomechanics in a parabolic mirror trap. J Opt Soc Am B, 34(7):1421–1428. https://doi.org/10.1364/JOSAB.34.001421
Waterman PC, 1965. Matrix for mulation of electromagnetic scattering. Proc IEEE, 53(8):805–812. https://doi.org/10.1109/PROC.1965.4058
Waterman PC, 1971. Symmetry, unitarity, and geometry in electromagnetic scattering. Phys Rev D, 3:825–839. https://doi.org/10.1103/PhysRevD.3.825
White DA, 2000. Numerical modeling of optical gradient traps using the vector finite element method. J Comput Phys, 159:13–37. https://doi.org/10.1006/jcph.2000.6422
Wineland DJ, Dehmelt H, 1975. Proposed 1014Δv<v laser fluorescence spectroscopy on Tl+ mono-ion oscillator. Am Phys Soc, 20:637.
Wright WH, Sonek GJ, Berns MW, 1994. Parametric study of the forces on microspheres held by optical tweezers. Appl Opt, 33(9):1735–1748. https://doi.org/10.1364/AO.33.001735
Yin ZQ, Geraci AA, Li TC, 2013. Optomechanics of levitated dielectric particles. Int J Mod Phys B, 27(26):1330018. https://doi.org/10.1142/S0217979213300181
Acknowledgements
The authors acknowledge the valuable discussions with all the participants in the 2018 Hefei Symposium on Vacuum Optical Tweezers Technology and Applications.
Author information
Authors and Affiliations
Corresponding author
Additional information
Project supported by the Joint Fund of Ministry of Education, China (No. 6141A02011604), the Fundamental Research Funds for the Central Universities, China (Nos. 2016XZZX00401 and 2018FZA5002), and the National Program for Special Support of Top-Notch Young Professionals, China
Rights and permissions
About this article
Cite this article
Li, N., Zhu, Xm., Li, Wq. et al. Review of optical tweezers in vacuum. Frontiers Inf Technol Electronic Eng 20, 655–673 (2019). https://doi.org/10.1631/FITEE.1900095
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1631/FITEE.1900095