Conclusions
A compact coupled-fed dual-antenna building block has been constructed in this study. The building block is simple in structure and easy to process, and has a high degree of isolation. The dual-antenna building block is composed of a coupled-fed loop antenna and a coupled-fed slot antenna that completely overlap. Based on this dual-antenna module, an eight-element MIMO system is designed, and the fabricated eight-element MIMO array is measured. The measured isolation of the designed eight-element MIMO system is >18.5 dB without any decoupling element. In addition, the MIMO array has good measured efficiencies, with a measured efficiency variation range of 43%–54% in the entire working frequency band. The measured ECC of the MIMO system is <0.02. Therefore, the designed MIMO array has great potential in 5G metal-rimmed mobile phone applications.
摘要
提出一款应用于第五代金属边框智能手机的高隔离度两天线模块. 基于一个蚀刻在地板上的T形缝隙, 通过合理地设计一个耦合馈电环天线和一个耦合馈电缝隙天线, 实现了一款紧凑的两天线模块. 尽管耦合馈电环天线和耦合馈电缝隙天线共口径, 两者之间的隔离度高于30 dB. 随后, 通过集成4个两天线模块, 实现了一款8×8多入多出系统. 该系统实测互耦和包络相关系数分别小于−18.5 dB和0.02.
Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable request.
References
Chang L, He WB, Chen XM, et al., 2022. Zero ground clearance dual antenna pair for metal-cased fifth-generation multiple input multiple output smartphone. Front Inform Technol Electron Eng, 23(10):1562–1567. https://doi.org/10.1631/FITEE.2200119
Chen QG, Lin HW, Wang JP, et al., 2019. Single ring slot-based antennas for metal-rimmed 4G/5G smartphones. IEEE Trans Antenn Propag, 67(3):1476–1487. https://doi.org/10.1109/tap.2018.2883686
Fang YX, Liu Y, Jia YT, et al., 2022. 5G SAR-reduction MIMO antenna with high isolation for full metal-rimmed tablet device. IEEE Trans Antenn Propag, 70(5):3846–3851. https://doi.org/10.1109/tap.2021.3137295
Guo JL, Cui L, Li C, et al., 2018. Side-edge frame printed eight-port dual-band antenna array for 5G smartphone applications. IEEE Trans Antenn Propag, 66(12):7412–7417. https://doi.org/10.1109/tap.2018.2872130
Hei YQ, He JG, Li WT, 2021. Wideband decoupled 8-element MIMO antenna for 5G mobile terminal applications. IEEE Antenn Wirel Propag Lett, 20(8):1448–1452. https://doi.org/10.1109/lawp.2021.3086261
Hong W, 2017. Solving the 5G mobile antenna puzzle: assessing future directions for the 5G mobile antenna paradigm shift. IEEE Microw Mag, 18(7):86–102. https://doi.org/10.1109/mmm.2017.2740538
Hu W, Chen Z, Qian L, et al., 2022. Wideband back-cover antenna design using dual characteristic modes with high isolation for 5G MIMO smartphone. IEEE Trans Antenn Propag, 70(7):5254–5265. https://doi.org/10.1109/tap.2022.3145456
Hu W, Li QS, Wu H, et al., 2023. Dual-band antenna pair with high isolation using multiple orthogonal modes for 5G smart-phones. IEEE Trans Antenn Propag, 71(2):1949–1954. https://doi.org/10.1109/tap.2022.3233458
Jiang W, Liu B, Cui YQ, et al., 2019. High-isolation eight-element MIMO array for 5G smartphone applications. IEEE Access, 7:34104–34112. https://doi.org/10.1109/access.2019.2904647
Li MY, Ban YL, Xu ZQ, et al., 2016. Eight-port orthogonally dual-polarized antenna array for 5G smartphone applications. IEEE Trans Antenn Propag, 64(9):3820–3830. https://doi.org/10.1109/tap.2016.2583501
Li YX, Sim CYD, Luo Y, et al., 2019. High-isolation 3.5 GHz eight-antenna MIMO array using balanced open-slot antenna element for 5G smartphones. IEEE Trans Antenn Propag, 67(6):3820–3830. https://doi.org/10.1109/tap.2019.2902751
Liu Y, Ren AD, Liu H, et al., 2019. Eight-port MIMO array using characteristic mode theory for 5G smartphone applications. IEEE Access, 7:45679–45692. https://doi.org/10.1109/access.2019.2909070
Luo Y, Zhu L, Liu Y, et al., 2022. A decoupling structure without sacrificing antenna-element performance for 5G smartphone designs. Int J RF Microw Comput-Aided Eng, 32(9):e23258. https://doi.org/10.1002/mmce.23258
Luomaniemi R, Ylä-Oijala P, Lehtovuori A, et al., 2021. Designing hand-immune handset antennas with adaptive excitation and characteristic modes. IEEE Trans Antenn Propag, 69(7):3829–3839. https://doi.org/10.1109/tap.2020.3044640
Qu LY, Piao HY, 2022. A dual-port single-dipole MIMO antenna pair based on selective modal excitation for 5G metal-rimmed terminals. IEEE Access, 10:100208–100214. https://doi.org/10.1109/access.2022.3188017
Ren AD, Liu Y, Sim CYD, 2019a. A compact building block with two shared-aperture antennas for eight-antenna MIMO array in metal-rimmed smartphone. IEEE Trans Antenn Propag, 67(10):6430–6438. https://doi.org/10.1109/tap.2019.2920306
Ren AD, Liu Y, Yu HW, et al., 2019b. A high-isolation building block using stable current nulls for 5G smartphone applications. IEEE Access, 7:170419–170429. https://doi.org/10.1109/access.2019.2955495
Ren ZY, Zhao AP, Wu SJ, 2019. MIMO antenna with compact decoupled antenna pairs for 5G mobile terminals. IEEE Antenn Wirel Propag Lett, 18(7):1367–1371. https://doi.org/10.1109/lawp.2019.2916738
Sultan KS, Abdullah HH, Abdallah EA, et al., 2020. Metasurface-based dual polarized MIMO antenna for 5G smartphones using CMA. IEEE Access, 8:37250–37264. https://doi.org/10.1109/access.2020.2975271
Sun LB, Li Y, Zhang ZJ, et al., 2020. Self-decoupled MIMO antenna pair with shared radiator for 5G smartphones. IEEE Trans Antenn Propag, 68(5):3423–3432. https://doi.org/10.1109/tap.2019.2963664
Sun LB, Li Y, Zhang ZJ, 2021. Wideband integrated quad-element MIMO antennas based on complementary antenna pairs for 5G smartphones. IEEE Trans Antenn Propag, 69(8):4466–4474. https://doi.org/10.1109/tap.2021.3060020
Wong KL, Tsai CY, Lu JY, 2017. Two asymmetrically mirrored gap-coupled loop antennas as a compact building block for eight-antenna MIMO array in the future smartphone. IEEE Trans Antenn Propag, 65(4):1765–1778. https://doi.org/10.1109/tap.2017.2670534
Ye Y, Zhao X, Wang JY, 2022. Compact high-isolated MIMO antenna module with chip capacitive decoupler for 5G mobile terminals. IEEE Antenn Wirel Propag Lett, 21(5):928–932. https://doi.org/10.1109/lawp.2022.3152236
Zhang HH, Liu XZ, Cheng GS, et al., 2022. Low-SAR four-antenna MIMO array for 5G mobile phones based on the theory of characteristic modes of composite PEC-lossy dielectric structures. IEEE Trans Antenn Propag, 70(3):1623–1631. https://doi.org/10.1109/tap.2021.3133432
Zhang XX, Ren AD, Liu Y, 2020. Decoupling methods of MIMO antenna arrays for 5G applications: a review. Front Inform Technol Electron Eng, 21(1):62–71. https://doi.org/10.1631/FITEE.1900466
Zhao X, Yeo SP, Ong LC, 2018. Decoupling of inverted-F antennas with high-order modes of ground plane for 5G mobile MIMO platform. IEEE Trans Antenn Propag, 66(9):4485–4495. https://doi.org/10.1109/tap.2018.2851381
Author information
Authors and Affiliations
Contributions
Aidi REN designed the research. Aidi REN and Chengwei YU processed the data. Chengwei YU drafted the paper. Lixia YANG, Wei CUI, and Zhixiang HUANG helped organize the paper. Aidi REN and Ying LIU revised and finalized the paper.
Corresponding author
Ethics declarations
Aidi REN, Chengwei YU, Lixia YANG, Wei CUI, Zhixiang HUANG, and Ying LIU declare that they have no conflict of interest.
Additional information
Project supported by the National Natural Science Foundation of China (No. 62201006) and the China Postdoctoral Science Foundation (No. 2022M722961)
Rights and permissions
About this article
Cite this article
Ren, A., Yu, C., Yang, L. et al. A high-isolation coupled-fed building block for metal-rimmed 5G smartphones. Front Inform Technol Electron Eng 24, 1657–1664 (2023). https://doi.org/10.1631/FITEE.2300203
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1631/FITEE.2300203