Abstract
High-throughput satellites (HTSs) play an important role in future millimeter-wave (mmWave) aeronautical communication to meet high speed and broad bandwidth requirements. This paper investigates the outage performance of an aeronautical broadband satellite communication system’s forward link, where the feeder link from the gateway to the HTS uses free-space optical (FSO) transmission and the user link from the HTS to aircraft operates at the mmWave band. In the user link, spot beam technology is exploited at the HTS and a massive antenna array is deployed at the aircraft. We first present a location-based beamforming (BF) scheme to maximize the expected output signal-to-noise ratio (SNR) of the forward link with the amplify-and-forward (AF) protocol, which turns out to be a phased array. Then, by supposing that the FSO feeder link follows Gamma-Gamma fading whereas the mmWave user link experiences shadowed Rician fading, we take the influence of the phase error into account, and derive the closed-form expression of the outage probability (OP) for the considered system. To gain further insight, a simple asymptotic OP expression at a high SNR is provided to show the diversity order and coding gain. Finally, numerical simulations are conducted to confirm the validity of the theoretical analysis and reveal the effects of phase errors on the system outage performance.
摘要
高通量卫星系统可以满足未来高速率和大带宽的需求, 在毫米波航空通信中扮演着重要角色. 研究了航空宽带卫星通信系统前向链路的中断性能, 其中从信关站到卫星的馈线链路使用自由空间光通信传输, 从卫星到飞机的用户链路则在毫米波频段工作. 特别地, 在用户链路中, 高通量卫星采用点波束技术, 并在飞机上部署大型天线阵列. 首先, 在采用放大转发协议情况下, 提出一种基于位置的波束成形方案, 使得平均输出信噪比最大, 并且此方案适用于相控阵. 然后, 假设馈电链路服从伽马—伽马分布, 而用户链路经历阴影莱斯衰落, 同时考虑相位误差影响, 推导出系统的中断概率闭合表达式. 为获得分集度和编码增益, 进一步推导了高信噪比情况下的渐近中断表达式. 最后, 数值仿真验证了理论分析的有效性, 并揭示相位误差对系统中断性能的影响.
Similar content being viewed by others
References
Abdi A, Lau WC, Alouini MS, et al., 2003. A new simple model for land mobile satellite channels: first- and second-order statistics. IEEE Trans Wirel Commun, 2(3):519–528. https://doi.org/10.1109/TWC.2003.811182
Ahmad I, Nguyen KD, Letzepis N, 2017. Performance analysis of high throughput satellite systems with optical feeder links. Proc IEEE Global Communications Conf, p.1–7. https://doi.org/10.1109/GLOCOM.2017.8255105
Andrews LC, Phillips RL, 2005. Laser Beam Propagation Through Random Media (2nd Ed.). SPIE Press. https://doi.org/10.1117/3.626196
Bankey V, Upadhyay PK, Costa DBD, et al., 2018. Performance analysis of multi-antenna multiuser hybrid satellite-terrestrial relay systems for mobile services delivery. IEEE Access, 6:24729–24745. https://doi.org/10.1109/ACCESS.2018.2830801
Chayot R, Thomas N, Poulliat C, et al., 2017. Channel estimation and equalization for CPM with application for aeronautical communications via a satellite link. Proc IEEE Military Communications Conf, p.888–893. https://doi.org/10.1109/MILCOM.2017.8170746
Cianca E, Rossi T, Ruggieri M, et al., 2018. Softwarization and virtualization as enablers for future EHF/FSO high throughput satellites. Proc IEEE Global Communications Conf, p.1–6. https://doi.org/10.1109/GLOCOM.2018.8647698
Gerbracht S, Scheunert C, Jorswieck EA, 2012. Secrecy outage in MISO systems with partial channel information. IEEE Trans Inform Forens Secur, 7(2):704–716. https://doi.org/10.1109/TIFS.2011.2181946
Gradshteyn IS, Ryzhik IM, 2007. Table of Integrals, Series and Products (7th Ed.). Academic Press, New York, USA. https://doi.org/10.2307/2007757
Huang QQ, Lin M, Wang JB, et al., 2020a. Energy efficient beamforming schemes for satellite-aerial-terrestrial networks. IEEE Trans Commun, 68(6):3863–3875. https://doi.org/10.1109/TCOMM.2020.2978044
Huang QQ, Lin M, Zhu WP, et al., 2020b. Performance analysis of integrated satellite-terrestrial multiantenna relay networks with multiuser scheduling. IEEE Trans Aerosp Electron Syst, 56(4):2718–2731. https://doi.org/10.1109/TAES.2019.2952698
Huang XJ, Zhang JA, Liu RP, et al., 2019. Airplane-aided integrated networking for 6G wireless: will it work? IEEE Veh Technol Mag, 14(3):84–91. https://doi.org/10.1109/MVT.2019.2921244
Illi E, Bouanani FE, Ayoub F, et al., 2020. A PHY layer security analysis of a hybrid high throughput satellite with an optical feeder link. IEEE Open J Commun Soc, 1:713–731. https://doi.org/10.1109/OJCOMS.2020.2995327
Jacob P, Sirigina RP, Madhukumar AS, et al., 2017. Cognitive radio for aeronautical communications: a survey. IEEE Access, 4:3417–3443. https://doi.org/10.1109/ACCESS.2016.2570802
Kapusuz KY, Sen Y, Bulut M, et al., 2016. Low-profile scalable phased array antenna at Ku-band for mobile satellite communications. Proc IEEE Int Symp on Phased Array Systems and Technology, p.1–4. https://doi.org/10.1109/ARRAY.2016.7832648
Kaushal H, Kaddoum G, 2017. Optical communication in space: challenges and mitigation techniques. IEEE Commun Surv Tut, 19(1):57–96. https://doi.org/10.1109/COMST.2016.2603518
Kong HC, Lin M, Zhu WP, et al., 2020. Multiuser scheduling for asymmetric FSO/RF links in satellite-UAV-terrestrial networks. IEEE Wirel Commun Lett, 9(8):1235–1239. https://doi.org/10.1109/LWC.2020.2986750
Lin Z, Lin M, Ouyang J, et al., 2019. Robust secure beam-forming for multibeam satellite communication systems. IEEE Trans Veh Technol, 68(6):6202–6206. https://doi.org/10.1109/TVT.2019.2913793
Lin Z, Lin M, Zhu WP, et al., 2020a. Robust secure beamforming for wireless powered cognitive satellite-terrestrial networks. IEEE Trans Cogn Commun Netw, online. https://doi.org/10.1109/TCCN.2020.3016096
Lin Z, Lin M, Champagne B, et al., 2020b. Secure beamforming for cognitive satellite terrestrial networks with unknown eavesdroppers. IEEE Syst J, online. https://doi.org/10.1109/JSYST.2020.2983309
Lyras NK, Kourogiorgas CI, Kapsis TT, et al., 2019. Ground-to-satellite optical link turbulence effects: propagation modelling & transmit diversity performance. Proc 13th European Conf on Antennas and Propagation, p.1–5.
Mengali A, Kayhan F, Shankar B, et al., 2016. Exploiting diversity in future generation satellite systems with optical feeder links. Proc 34th Int Communications Satellite Systems Conf, p.1–10. https://doi.org/10.2514/6.2016-5768
Morales-Ferre R, Richter P, Falletti E, et al., 2020. A survey on coping with intentional interference in satellite navigation for manned and unmanned aircraft. IEEE Commun Surv Tut, 22(1):249–291. https://doi.org/10.1109/COMST.2019.2949178
Mullen K, 1967. The teacher’s corner: a note on the ratio of two independent random variables. Am Stat, 21(3):30–31. https://doi.org/10.1080/00031305.1967.10479818
Rao JBL, Mital R, Patel DP, et al., 2013. Low-cost multi-beam phased array antenna for communications with GEO satellites. IEEE Aerosp Electron Syst Mag, 28(6):32–37. https://doi.org/10.1109/MAES.2013.6533742
Sacchi C, Rossi T, Murroni M, et al., 2019. Extremely high frequency (EHF) bands for future broadcast satellite services: opportunities and challenges. IEEE Trans Broadcast, 65(3):609–626. https://doi.org/10.1109/TBC.2019.2892655
Trinh PV, Pham AT, 2015. Outage performance of dual-hop AF relaying systems with mixed MMW RF and FSO links. Proc IEEE 82nd Vehicular Technology Conf, p.1–5. https://doi.org/10.1109/VTCFall.2015.7391061
Winters JH, Luddy MJ, 2019. Phased array applications to improve troposcatter communications. Proc IEEE Int Symp on Phased Array System & Technology, p.1–4. https://doi.org/10.1109/PAST43306.2019.9020793
Wolfram I, 2010. Mathematica Edition: Version 80. https://functions.wolfram.com
Zedini E, Ansari IS, Alouini MS, 2015. Performance analysis of mixed Nakagami-m and Gamma-Gamma dualhop FSO transmission systems. IEEE Photon J, 7(1):7900120.
Zedini E, Kammoun A, Alouini MS, 2020. Performance of multibeam very high throughput satellite systems based on FSO feeder links with HPA nonlinearity. IEEE Trans Wirel Commun, 19(9):5908–5923. https://doi.org/10.1109/TWC.2020.2998139
Zhang YH, Huang WH, Li P, et al., 2019. Analysis of influence of channel damage on phased array communication links. Proc IEEE-APS Topical Conf on Antennas and Propagation in Wireless Communications, p.306–310. https://doi.org/10.1109/APWC.2019.8870475
Author information
Authors and Affiliations
Contributions
Min LIN designed the research. Huaicong KONG and Xiaoyu LIU conducted the derivation and validation. Huaicong KONG and Jian OUYANG drafted the manuscript. Shiwen HE and Weiping ZHU helped organize the manuscript. Shiwen HE and Weiping ZHU revised and finalized the paper.
Corresponding author
Ethics declarations
Huaicong KONG, Min LIN, Shiwen HE, Xiaoyu LIU, Jian OUYANG, and Weiping ZHU declare that they have no conflict of interest.
Additional information
Project supported by the Key International Cooperation Research Project (No. 61720106003), the National Natural Science Foundation of China (No. 61801234), the Shanghai Aerospace Science and Technology Innovation Foundation (No. SAST2019095), the Research Project of Science and Technology on Complex Electronic System Simulation Laboratory (No. DXZT-JC-ZZ-2019-009), NUPTSF (No. NY220111), and the Postgraduate Research and Practice Innovation Program of Jiangsu Province, China (Nos. KYCX19_0950 and KYCX20_0724)
Rights and permissions
About this article
Cite this article
Kong, H., Lin, M., He, S. et al. Forward link outage performance of aeronautical broadband satellite communications. Front Inform Technol Electron Eng 22, 790–801 (2021). https://doi.org/10.1631/FITEE.2000445
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1631/FITEE.2000445
Key words
- Aeronautical broadband satellite network
- Free-space optical (FSO) transmission
- High throughput mmWave communication
- Outage probability
- Phase error