Abstract
This study is concerned with probabilistic Boolean control networks (PBCNs) with state feedback control. A novel definition of bisimilar PBCNs is proposed to lower computational complexity. To understand more on bisimulation relations between PBCNs, we resort to a powerful matrix manipulation called semi-tensor product (STP). Because stabilization of networks is of critical importance, the propagation of stabilization with probability one between bisimilar PBCNs is then considered and proved to be attainable. Additionally, the transient periods (the maximum number of steps to implement stabilization) of two PBCNs are certified to be identical if these two networks are paired with a bisimulation relation. The results are then extended to the probabilistic Boolean networks.
Similar content being viewed by others
References
Bof N, Fornasini E, Valcher ME, 2015. Output feedback stabilization of Boolean control networks. Automatica, 57:21–28. https://doi.org/10.1016/j.automatica.2015.03.032
Chen H, Liang J, Wang Z, 2016. Pinning controllability of autonomous Boolean control networks. Sci China Inform Sci, 59(7):070107. https://doi.org/10.1007/s11432-016-5579-8
Cheng D, 2009. Input-state approach to Boolean networks. IEEE Trans Neur Netw, 20(3):512–521. https://doi.org/10.1109/TNN.2008.2011359
Cheng D, Qi H, 2009. Controllability and observability of Boolean control networks. Automatica, 45(7):1659–1667. https://doi.org/10.1016/j.automatica.2009.03.006
Cheng D, Li Z, Qi H, 2010a. Realization of Boolean control networks. Automatica, 46(1):62–69. https://doi.org/10.1016/j.automatica.2009.10.036
Cheng D, Qi H, Li Z, 2010b. Analysis and Control of Boolean Networks. Springer, London, UK. https://doi.org/10.1007/978-0-85729-097-7
Cheng D, Qi H, Li Z, et al., 2011. Stability and stabilization of Boolean networks. Int J Robust Nonl Contr, 21(2):134–156. https://doi.org/10.1002/rnc.1581
Ching WK, Zhang SQ, Jiao Y, et al., 2009. Optimal control policy for probabilistic Boolean networks with hard constraints. IET Syst Biol, 3(2):90–99. https://doi.org/10.1049/iet-syb.2008.0120
Fornasini E, Valcher ME, 2012. Observability, reconstructibility and state observers of Boolean control networks. IEEE Trans Autom Contr, 58(6):1390–1401. https://doi.org/10.1109/TAC.2012.2231592
Fornasini E, Valcher ME, 2014. Optimal control of Boolean control networks. IEEE Trans Autom Contr, 59(5):1258–1270. https://doi.org/10.1109/TAC.2013.2294821
Guo Y, Wang P, Gui W, et al., 2015. Set stability and set stabilization of Boolean control networks based on invariant subsets. Automatica, 61:106–112. https://doi.org/10.1016/j.automatica.2015.08.006
Huang C, Wang W, Cao JD, et al., 2018. Synchronization-based passivity of partially coupled neural networks with event-triggered communication. Neurocomputing, 319:134–143. https://doi.org/10.1016/j.neucom.2018.08.060
Huang C, Lu JQ, Ho WCD, et al., 2020. Stabilization of probabilistic Boolean networks via pinning control strategy. Inform Sci, 510:205–217. https://doi.org/10.1016/j.ins.2019.09.029
Kauffman SA, 1969. Metabolic stability and epigenesis in randomly constructed genetic nets. J Theor Biol, 22(3):437–467. https://doi.org/10.1016/0022-5193(69)90015-0
Laschov D, Margaliot M, 2012. Controllability of Boolean control networks via the Perron-Frobenius theory. Automatica, 48(6):1218–1223. https://doi.org/10.1016/j.automatica.2012.03.022
Li BW, Lou JG, Liu Y, et al., 2019. Robust invariant set analysis of Boolean networks. Complexity, 2019:2731395. https://doi.org/10.1155/2019/2731395
Li FF, 2016. Pinning control design for the stabilization of Boolean networks. IEEE Trans Neur Netw Learn Syst, 27(7):1585–1590. https://doi.org/10.1109/TNNLS.2015.2449274
Li FF, Xie LH, 2019. Set stabilization of probabilistic Boolean networks using pinning control. IEEE Trans Neur Netw Learn Syst, 30(8):2555–2561. https://doi.org/10.1109/TNNLS.2018.2881279
Li FF, Yu ZX, 2016. Anti-synchronization of two coupled Boolean networks. J Franklin Inst, 353(18):5013–5024. https://doi.org/10.1016/j.jfranklin.2016.09.023
Li HT, Wang YZ, 2016. Minimum-time state feedback stabilization of constrained Boolean control networks. Asian J Contr, 18(5):1688–1697. https://doi.org/10.1002/asjc.1234
Li R, Yang M, Chu TG, 2014a. State feedback stabilization for probabilistic Boolean networks. Automatica, 50(4):1272–1278. https://doi.org/10.1016/j.automatica.2014.02.034
Li R, Yang M, Chu TG, 2014b. State feedback stabilization for probabilistic Boolean networks. Automatica, 50(4):1272–1278. https://doi.org/10.1016/j.automatica.2014.02.034
Li R, Chu TG, Wang XY, 2018. Bisimulations of Boolean control networks. SIAM J Contr Optim, 56(1):388–416. https://doi.org/10.1137/17M1117331
Li YY, Li BW, Liu Y, et al., 2018. Set stability and stabilization of switched Boolean networks with state-based switching. IEEE Access, 6:35624–35630. https://doi.org/10.1109/ACCESS.2018.2851391
Li YY, Liu RJ, Lou JG, et al., 2019. Output tracking of Boolean control networks driven by constant reference signal. IEEE Access, 7:112572–112577. https://doi.org/10.1109/ACCESS.2019.2934740
Liang JH, Han J, 2012. Stochastic Boolean networks: an efficient approach to modeling gene regulatory networks. BMC Syst Biol, 6(1):113. https://doi.org/10.1186/1752-0509-6-113
Liang JL, Chen HW, Liu Y, 2017. On algorithms for state feedback stabilization of Boolean control networks. Automatica, 84:10–16. https://doi.org/10.1016/j.automatica.2017.06.040
Liu RJ, Qian CJ, Liu SQ, et al., 2016. State feedback control design for Boolean networks. BMC Syst Biol, 10(3):70. https://doi.org/10.1186/s12918-016-0314-z
Liu Y, Li BW, Lu JQ, et al., 2017. Pinning control for the disturbance decoupling problem of Boolean networks. IEEE Trans Autom Contr, 62(12):6595–6601. https://doi.org/10.1109/TAC.2017.2715181
Lu J, Zhong J, Huang C, et al., 2016. On pinning controllability of Boolean control networks. IEEE Trans Autom Contr, 61(6):1658–1663. https://doi.org/10.1109/TAC.2015.2478123
Lu J, Li M, Huang T, et al., 2018a. The transformation between the Galois NLFSRs and the Fibonacci NLF-SRs via semi-tensor product of matrices. Automatica, 96:393–397. https://doi.org/10.1016/j.automatica.2018.07.011
Lu J, Sun L, Liu Y, et al., 2018b. Stabilization of Boolean control networks under aperiodic sampled-data control. SIAM J Contr Optim, 56(6):4385–4404. https://doi.org/10.1137/18M1169308
Ma Z, Wang ZJ, McKeown MJ, 2008. Probabilistic Boolean network analysis of brain connectivity in Parkinson’s disease. IEEE J Sel Top Signal Process, 2(6):975–985. https://doi.org/10.1109/JSTSP.2008.2007816
Shmulevich I, Dougherty ER, Kim S, et al., 2002. Probabilistic Boolean networks: a rule-based uncertainty model for gene regulatory networks. Bioinformatics, 18(2):261–274. https://doi.org/10.1093/bioinformatics/18.2.261
Sun LJ, Lu JQ, Ching WK, 2020. Switching-based stabilization of aperiodic sampled-data Boolean control networks with all subsystems unstable. Front Inform Technol Electron Eng, 21(2):260–267. https://doi.org/10.1631/FITEE.1900312
Tong LY, Liu Y, Li YY, et al., 2018a. Robust control invariance of probabilistic Boolean control networks via event-triggered control. IEEE Access, 6:37767–37774. https://doi.org/10.1109/ACCESS.2018.2828128
Tong LY, Liu Y, Lou JG, et al., 2018b. Static output feedback set stabilization for context-sensitive probabilistic Boolean control networks. Appl Math Comput, 332:263–275. https://doi.org/10.1016/j.amc.2018.03.043
Veliz-Cuba A, Stigler B, 2011. Boolean models can explain bistability in the lac operon. J Comput Biol, 18(6):783–794. https://doi.org/10.1089/cmb.2011.0031
Wang LP, Pichler EE, Ross J, 1990. Oscillations and chaos in neural networks: an exactly solvable model. PANS, 87(23):9467–9471. https://doi.org/10.1073/pnas.87.23.9467
Xiong WJ, Ho WCD, Xu L, 2019. Multi-layered sampleddata iterative learning tracking for discrete systems with cooperative-antagonistic interactions. IEEE Trans Cybern, online. https://doi.org/10.1109/TCYB.2019.2915664
Zhu QX, Liu Y, Lu JQ, et al., 2018. On the optimal control of Boolean control networks. SIAM J Contr Optim, 56(2):1321–1341. https://doi.org/10.1137/16M1070281
Zhu QX, Liu Y, Lu JQ, et al., 2019. Further results on the controllability of Boolean control networks. IEEE Trans Autom Contr, 64(1):440–442. https://doi.org/10.1109/TAC.2018.2830642
Zhu SY, Lou J, Liu Y, et al., 2018. Event-triggered control for the stabilization of probabilistic Boolean control networks. Complexity, 2018:9259348. https://doi.org/10.1155/2018/9259348
Zhu SY, Lu JG, Liu Y, 2019. Asymptotical stability of probabilistic Boolean networks with state delays. IEEE Trans Autom Contr, online. https://doi.org/10.1109/TAC.2019.2934532
Author information
Authors and Affiliations
Contributions
Chi HUANG formulated the research goals. Yao CHEN and Nan JIANG proposed the method and obtained the final theorems. Jurgen KURTHS and Nan JIANG built the model for verification. Nan JIANG wrote the original draft. Nan JIANG, Chi HUANG, Yao CHEN, and Jurgen KURTHS revised and edited the final version.
Corresponding author
Additional information
Compliance with ethics guidelines
Nan JIANG, Chi HUANG, Yao CHEN, and Jurgen KURTHS declare that they have no conflict of interest.
Project supported by the National Natural Science Foundation of China (Nos. 61603268 and 61773319) and the Fundamental Research Funds for the Central Universities, China (No. JBK190502)
Rights and permissions
About this article
Cite this article
Jiang, N., Huang, C., Chen, Y. et al. Bisimulation-based stabilization of probabilistic Boolean control networks with state feedback control. Front Inform Technol Electron Eng 21, 268–280 (2020). https://doi.org/10.1631/FITEE.1900447
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1631/FITEE.1900447
Key words
- Probabilistic Boolean control network
- Bisimulation
- Stabilization with probability one
- State feedback control