Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

NIPAD: a non-invasive power-based anomaly detection scheme for programmable logic controllers

  • Published:
Frontiers of Information Technology & Electronic Engineering Aims and scope Submit manuscript

Abstract

Industrial control systems (ICSs) are widely used in critical infrastructures, making them popular targets for attacks to cause catastrophic physical damage. As one of the most critical components in ICSs, the programmable logic controller (PLC) controls the actuators directly. A PLC executing a malicious program can cause significant property loss or even casualties. The number of attacks targeted at PLCs has increased noticeably over the last few years, exposing the vulnerability of the PLC and the importance of PLC protection. Unfortunately, PLCs cannot be protected by traditional intrusion detection systems or antivirus software. Thus, an effective method for PLC protection is yet to be designed. Motivated by these concerns, we propose a non-invasive powerbased anomaly detection scheme for PLCs. The basic idea is to detect malicious software execution in a PLC through analyzing its power consumption, which is measured by inserting a shunt resistor in series with the CPU in a PLC while it is executing instructions. To analyze the power measurements, we extract a discriminative feature set from the power trace, and then train a long short-term memory (LSTM) neural network with the features of normal samples to predict the next time step of a normal sample. Finally, an abnormal sample is identified through comparing the predicted sample and the actual sample. The advantages of our method are that it requires no software modification on the original system and is able to detect unknown attacks effectively. The method is evaluated on a lab testbed, and for a trojan attack whose difference from the normal program is around 0.63%, the detection accuracy reaches 99.83%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alcaraz, C., Zeadally, S., 2013. Critical control system protection in the 21st century. Computer, 46(10): 74–83. http://dx.doi.org/10.1109/MC.2013.69

    Article  Google Scholar 

  • Alcaraz, C., Zeadally, S., 2015. Critical infrastructure protection: requirements and challenges for the 21st century. Int. J. Crit. Infrastr. Protect., 8: 53–66. http://dx.doi.org/10.1016/j.ijcip.2014.12.002

    Article  Google Scholar 

  • Bencsáth, B., Pék, G., Buttyán, L., et al., 2012. The cousins of Stuxnet: Duqu, Flame, and Gauss. Fut. Int., 4(4): 971–1003. http://dx.doi.org/10.3390/fi4040971

    Article  Google Scholar 

  • Bolton, W., 2015. Programmable Logic Controllers (6th Ed.). Newnes, USA.

    Book  Google Scholar 

  • Bullock, J., Conservatoire, U.C.E.B., 2007. LibXtract: a lightweight library for audio feature extraction. Proc. Int. Computer Music Conf., p.1–4.

    Google Scholar 

  • Candes, E.J., Tao, T., 2006. Near-optimal signal recovery from random projections: universal encoding strategies? IEEE Trans. Inform. Theory, 52(12): 5406–5425. http://dx.doi.org/10.1109/TIT.2006.885507

    Article  MathSciNet  Google Scholar 

  • Cárdenas, A.A., Amin, S., Sastry, S., 2008. Research challenges for the security of control systems. Proc. 3rd Conf. on Hot Topics in Security, Article 6.

    Google Scholar 

  • Chen, T.M., Abu-Nimeh, S., 2011. Lessons from Stuxnet. Computer, 44(4): 91–93. http://dx.doi.org/10.1109/MC.2011.115

    Article  Google Scholar 

  • Clark, S.S., Ransford, B., Rahmati, A., et al., 2013. WattsUpDoc: power side channels to nonintrusively discover untargeted malware on embedded medical devices. Proc. USENIX Workshop on Health Information Technologies, p.1–11.

    Google Scholar 

  • Coletta, A., Armando, A., 2015. Security monitoring for industrial control systems. Proc. Conf. on Cybersecurity of Industrial Control Systems, p.48–62. http://dx.doi.org/10.1007/978-3-319-40385-4_4

    Google Scholar 

  • Dalal, N., Triggs, B., 2005. Histograms of oriented gradients for human detection. Proc. IEEE Computer Society Conf. on Computer Vision and Pattern Recognition, p.886–893. http://dx.doi.org/10.1109/CVPR.2005.177

  • Formby, D., Srinivasan, P., Leonard, A., et al., 2016. Who’s in control of your control system? Device fingerprinting for cyber-physical systems. Proc. Network and Distributed System Security Symp., p.1–13.

    Google Scholar 

  • García-Teodoro, P., Díaz-Verdejo, J., Maciá-Fernández, G., et al., 2009. Anomaly-based network intrusion detection: techniques, systems and challenges. Comput. Secur., 28(1-2):18–28. http://dx.doi.org/10.1016/j.cose.2008.08.003

    Article  Google Scholar 

  • Gers, F.A., Schmidhuber, J.A., Cummins, F., 2000. Learning to forget: continual prediction with LSTM. Neur. Comput., 12(10): 2451–2471. http://dx.doi.org/10.1162/089976600300015015

    Article  Google Scholar 

  • Gonzalez, C.A., Hinton, A., 2014. Detecting malicious software execution in programmable logic controllers using power fingerprinting. Proc. Int. Conf. on Critical Infrastructure Protection, p.15–27. http://dx.doi.org/10.1007/978-3-662-45355-1_2

    Google Scholar 

  • Johnson, R.E., 2010. Survey of SCADA security challenges and potential attack vectors. Proc. Int. Conf. for Internet Technology and Secured Transactions, p.1–5.

    Google Scholar 

  • Kesler, B., 2011. The vulnerability of nuclear facilities to cyber attack. Strat. Insights, 10(1): 15–25.

    Google Scholar 

  • Krotofil, M., Gollmann, D., 2013. Industrial control systems security: what is happening? Proc. 11th IEEE Int. Conf. on Industrial Informatics, p.670–675. http://dx.doi.org/10.1109/INDIN.2013.6622964

    Google Scholar 

  • Langner, R., 2011. Stuxnet: dissecting a cyberwarfare weapon. IEEE Secur. Priv. 9(3): 49–51. http://dx.doi.org/10.1109/MSP.2011.67

    Article  Google Scholar 

  • Lee, H., Battle, A., Raina, R., et al., 2006. Efficient sparse coding algorithms. Proc. 19th Int. Conf. on Neural Information Processing Systems, p.801–808.

    Google Scholar 

  • Lowe, D.G., 2004. Distinctive image features from scaleinvariant keypoints. Int. J. Comput. Vis., 60(2): 91–110. http://dx.doi.org/10.1023/B:VISI.0000029664.99615.94

    Article  Google Scholar 

  • Macaulay, T., Singer, B.L., 2011. Cybersecurity for Industrial Control Systems: SCADA, DCS, PLC, HMI, and SIS. CRC Press, USA.

    Book  Google Scholar 

  • Malhotra, P., Vig, L., Shroff, G., et al., 2015. Long short term memory networks for anomaly detection in time series. Proc. European Symp. on Artificial Neural Networks, Computational Intelligence and Maching Learning, p.89–94.

    Google Scholar 

  • Manevitz, L.M., Yousef, M., 2002. One-class SVMs for document classification. J. Mach. Learn. Res., 2: 139–154.

    MATH  Google Scholar 

  • Mantere, M., Uusitalo, I., Sailio, M., et al., 2012. Challenges of machine learning based monitoring for industrial control system networks. Proc. 26th Int. Conf. on Advanced Information Networking and Applications Workshops, p.968–972. http://dx.doi.org/10.1109/WAINA.2012.135

    Google Scholar 

  • Morris, T., Vaughn, R., Dandass, Y., 2012. A retrofit network intrusion detection system for MODBUS RTU and ASCII industrial control systems. Proc. 45th Hawaii Int. Conf. on System Science, p.2338–2345. http://dx.doi.org/10.1109/HICSS.2012.78

    Google Scholar 

  • Nandakumar, K., Jain, A.K., 2004. Local correlation-based fingerprint matching. Proc. ICVGIP, p.503–508.

    Google Scholar 

  • Ni, B., Moulin, P., Yang, X., et al., 2015. Motion part regularization: improving action recognition via trajectory group selection. Proc. IEEE Conf. on Computer Vision and Pattern Recognition, p.3698–3706. http://dx.doi.org/10.1109/CVPR.2015.7298993

    Google Scholar 

  • Pearson, K., 1901. Mathematical contributions to the theory of evolution. X. Supplement to a memoir on skew variation. Phil. Trans. R. Soc. A, 197: 443–459.

    MATH  Google Scholar 

  • Peng, Y., Xiang, C., Gao, H., et al., 2015. Industrial control system fingerprinting and anomaly detection. Proc. Int. Conf. on Critical Infrastructure Protection, p.73–85. http://dx.doi.org/10.1007/978-3-319-26567-4_5

    Chapter  Google Scholar 

  • Piggin, R., 2015. Are industrial control systems ready for the cloud? Int. J. Crit. Infrastr. Protect., 9(C):38–40. http://dx.doi.org/10.1016/j.ijcip.2014.12.005

    Article  Google Scholar 

  • Ponomarev, S., Atkison, T., 2016. Industrial control system network intrusion detection by telemetry analysis. IEEE Trans. Depend. Sec. Comput., 13(2): 252–260. http://dx.doi.org/10.1109/TDSC.2015.2443793

    Article  Google Scholar 

  • Pretorius, B., van Niekerk, B., 2016. Cyber-security for ICS/SCADA: a South African perspective. Int. J. Cyber Warf. Terror., 6(3): 1–16. http://dx.doi.org/10.4018/IJCWT.2016070101

    Article  Google Scholar 

  • Shang, W., Zeng, P., Wan, M., et al., 2016. Intrusion detection algorithm based on OCSVM in industrial control system. Secur. Commun. Netw., 9(10): 1040–1049. http://dx.doi.org/10.1002/sec.1398

    Article  Google Scholar 

  • Slay, J., Miller, M., 2007. Lessons learned from the Maroochy water breach. Proc. Int. Conf. on Critical Infrastructure Protection, p.73–82. http://dx.doi.org/10.1007/978-0-387-75462-8_6

    Chapter  Google Scholar 

  • Stone, S.J., Temple, M.A., Baldwin, R.O., 2015. Detecting anomalous programmable logic controller behavior using RF-based Hilbert transform features and a correlation-based verification process. Int. J. Crit. Infrastr. Protect., 9(C):41–51. http://dx.doi.org/10.1016/j.ijcip.2015.02.001

    Article  Google Scholar 

  • Stouffer, K.A., Falco, J.A., Scarfone, K.A., 2011. Guide to Industrial Control Systems (ICS) Security: Supervisory Control and Data Acquisition (SCADA) Systems, Distributed Control Systems (DCS), and Other Control System Configurations such as Programmable Logic Controllers (PLC). Technical Report SP800-82, National Institute of Standards and Technology, USA.

  • Wang, H., Kläser, A., Schmid, C., et al., 2013. Dense trajectories and motion boundary descriptors for action recognition. Int. J. Comput. Vis., 103(1): 60–79. http://dx.doi.org/10.1007/s11263-012-0594-8

    Article  MathSciNet  Google Scholar 

  • Xu, J., Yang, G., Man, H., et al., 2013. L1 graph based on sparse coding for feature selection. Proc. Int. Symp. on Neural Networks, p.594–601. http://dx.doi.org/10.1007/978-3-642-39065-4_71

  • Zhong, W., Lu, H., Yang, M., 2012. Robust object tracking via sparsity-based collaborative model. Proc. IEEE Conf. on Computer Vision and Pattern Recognition, p.1838–1845. http://dx.doi.org/10.1109/CVPR.2012.6247882

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-yuan Xu.

Additional information

Project supported by the National Basic Research Program (973) of China (No. 2015AA050202)

ORCID: Wen-yuan XU, http://orcid.org/0000-0002-2428-973X

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, Yj., Xu, Wy., Jia, Zh. et al. NIPAD: a non-invasive power-based anomaly detection scheme for programmable logic controllers. Frontiers Inf Technol Electronic Eng 18, 519–534 (2017). https://doi.org/10.1631/FITEE.1601540

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/FITEE.1601540

Key words

CLC number

Navigation