Abstract
A hybrid optimization approach combining a particle swarm algorithm, a genetic algorithm, and a heuristic inter-leaving algorithm is proposed for scheduling tasks in the multifunction phased array radar. By optimizing parameters using chaos theory, designing the dynamic inertia weight for the particle swarm algorithm as well as introducing crossover operation and mutation operation of the genetic algorithm, both the efficiency and exploration ability of the hybrid algorithm are improved. Under the frame of the intelligence algorithm, the heuristic interleaving scheduling algorithm is presented to further use the time resource of the task waiting duration. A large-scale simulation demonstrates that the proposed algorithm is more robust and efficient than existing algorithms.
Similar content being viewed by others
References
Akhshabi, M., Tavakkoli-Moghaddam, R., Rahnamay-Roodposhti, F., 2014. A hybrid particle swarm optimiza-tion algorithm for a no-wait flow shop scheduling prob-lem with the total flow time. Int. J. Adv. Manuf. Technol., 70(5–8): 1181–1188. https://doi.org/10.1007/s00170-013-5351-9
Butler, J.M., 1998. Tracking and Control in Multi-function Radar. PhD Thesis, UCL University of London, London.
Chen, J., Tian, Z., Wang, L., et al., 2011. Adaptive simulta-neous multi-beam dwell scheduling algorithm for multi-function phased array radars. J. Inform. Comput. Sci., 8(14): 3051–3061.
Cheng, T., He, Z.S., Tang, T., 2008. Dwell scheduling algo-rithm for multifunction phased array radars based on the scheduling gain. J. Syst. Eng. Electron., 19(3): 479–485. https://doi.org/10.1016/S1004-4132(08)60110-3
Cheng, T., He, Z.S., Li, H.Y., 2009a. Adaptive dwell sched-uling for digital array radar based on online pulse inter-leaving. Chin. J. Electron., 18(3): 574–578.
Cheng, T., He, Z.S., Tang, T., 2009b. Novel radar dwell scheduling algorithm based on pulse interleaving. J. Syst. Eng. Electron., 20(2): 247–253.
de Jong, J.L., van Norden, W.L., 2007. Application of hybrid metaheuristics in sensor management. Aerosp. Sci. Technol., 11(4): 295–302. https://doi.org/10.1016/j.ast.2006.09.001
Galati, G., Emilio, G.P., 2015. Scheduling methods for a conformal, phased array multifunction radar. Proc. 2nd Int. Conf. on Advances in Information Processing and Communication Technology, p.103–108.
Galati, G., Madia, F., Carta, P., et al., 2015a. Time for a change in phased array radar architectures–Part I: planar vs. conformal arrays. Proc. 16th Int. Radar Symp., p.912–917. https://doi.org/10.1109/IRS.2015.7226275
Galati, G., Madia, F., Carta, P., et al., 2015b. Time for a change in phased array radar architectures–Part II: the d-Radar. Proc. Int. Radar Symp., p.24–26. https://doi.org/10.1109/IRS.2015.7226276
Ghosh, S., Hansen, J., Rajkumar, R., et al., 2004. Integrated resource management and scheduling with multi-resource constraints. Proc. 25th IEEE Int. Real-Time Systems Symp., p.12–22. https://doi.org/10.1109/REAL.2004.25
Huizing, A.G., Bloemen, A.A.F., 1996. An efficient schedul-ing algorithm for a multifunction radar. IEEE Int. Symp. on Phased Array Systems and Technology, p.359–364. https://doi.org/10.1109/PAST.1996.566115
Jiménez, M.I., Izquierdo, A., Villacorta, J.J., et al., 2009. Analysis and design of multifunction radar task sched-ulers based on queue. Proc. 28th Digital Avionics Sys-tems Conf., p.295–302. https://doi.org/10.1109/DASC.2009.5347448
Jiménez, M.I., Val, L.D., Villacorta, J.J., et al., 2012. Design of task scheduling process for a multifunction radar. IET Radar Sonar Navig., 6(5): 341–347. https://doi.org/10.1049/iet-rsn.2011.0309
Kuo, T.W., Chao, Y.S., Kuo, C.F., et al., 2005. Real-time dwell scheduling of component-oriented phased array radars. IEEE Trans. Comput., 54(1): 47–60. https://doi.org/10.1109/TC.2005.10
Liu, L.L., Hu, R.S., Hu, X.P., et al., 2015. A hybrid PSO-GA algorithm for job shop scheduling in machine tool pro-duction. Int. J. Prod. Res., 53(19): 5755–5781. https://doi.org/10.1080/00207543.2014.994714
Lu, J.B., Hu, W.D., Yu, W.X., 2006. Study on real-time task scheduling of multifunction phased array radars. Acta Electron. Sin., 34(4): 732–736 (in Chinese). https://doi.org/10.3321/j.issn:0372-2112.2006.04.032
Lu, J.B., Xiao, H., Xi, Z.M., et al, 2011. Multifunction phased array radar resource management: real-time scheduling algorithm. J. Comput. Inform. Syst., 7(2): 385–393.
Lu, J.B., Xiao, H., Xi, Z.M., et al, 2013. Phased array radar resource management: task scheduling and performance evaluation. J. Comput. Inform. Syst., 9(3): 1131–1138.
Mir, H.S., Abdelaziz, F.B., 2012. Cyclic task scheduling for multifunction radar. IEEE Trans. Autom. Sci. Eng., 9(3): 529–537. https://doi.org/10.1109/TASE.2012.2197857
Mir, H.S., Guitouni, A., 2014. Variable dwell time task scheduling for multifunction radar. IEEE Trans. Autom. Sci. Eng., 11(2): 463–472. https://doi.org/10.1109/TASE.2013.2285014
Orman, A.J., Potts, C.N., Shahani, A.K., et al., 1996. Sched-uling for a multifunction phased array radar system. Eur. J. Oper. Res., 90(1): 13–25 https://doi.org/10.1016/0377-2217(95)00307-X
Ott, E., Grebogi, C., Yorke, J.A., 1990. Controlling chaos. Phys. Rev. Lett., 64(11): 1196–1199. https://doi.org/10.1103/PhysRevLett.64.1196
Reinoso-Rondinel, R., Yu, T.Y., Torres, S., 2010. Multifunc-tion phased-array radar: time balance scheduler for adap-tive weather sensing. J. Atmos. Ocean. Technol., 27(11): 1854–1867. https://doi.org/10.1175/2010JTECHA1420.1
Tian, G.D., Ren, Y.P., Zhou, M.C., 2016. Dual-objective scheduling of rescue vehicles to distinguish forest fires via differential evolution and particle swarm optimization combined algorithm. IEEE Trans. Intell. Transp. Syst., 17(11): 3009–3021. https://doi.org/10.1109/TITS.2015.2505323
Wang, S.J., He, J., Wang, B., et al., 2014. Research on adaptive scheduling algorithm based on improved genetic algo-rithm for multifunctional phased array radar. Int. Conf. on Future Computer and Communication Engineering, p.24–28. https://doi.org/10.2991/icfcce-14.2014.7
Zeng, G., Lu, J.B., Hu, W.D., 2004a. Research on adaptive scheduling algorithm for multifunction Akhshabi, M., radar. Mod. Radar, 26(6): 14–18 (in Chinese). https://doi.org/10.16592/j.cnki.1004-7859.2004.06.006
Zeng, G., Hu, W.D., Lu, J.B., et al., 2004b. The simulation on adaptive scheduling for multifunction phased array radars. J. Syst. Simul., 16(9): 2026–2029 (in Chinese). https://doi.org/10.16182/j.cnki.joss.2004.09.044
Zhang, H.W., Xie, J.W., Sheng, C., 2016. Scheduling method for phased array radar over chaos adaptively genetic al-gorithm. Proc. 6th Int. Conf. on Information Science and Technology, p.111–116. https://doi.org/10.1109/ICIST.2016.7483395
Zhou, Y., Wang, G.Y., Wang, X.S., et al., 2006. Optimal scheduling using hybrid GA with heuristic rules for phased array radar. Syst. Eng. Electron., 28(7): 992–996, 1005 (in Chinese). https://doi.org/10.3321/j.issn:1001-506X.2006.07.014
Author information
Authors and Affiliations
Corresponding author
Additional information
Project supported by the National Natural Science Foundation of China (Nos. 61503408 and 61601504)
Rights and permissions
About this article
Cite this article
Zhang, Hw., Xie, Jw., Lu, Wl. et al. A scheduling method based on a hybrid genetic particle swarm algorithm for multifunction phased array radar. Frontiers Inf Technol Electronic Eng 18, 1806–1816 (2017). https://doi.org/10.1631/FITEE.1601358
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1631/FITEE.1601358