Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Distributed fault-tolerant strategy for electric swing system of hybrid excavators under communication errors

  • Published:
Frontiers of Information Technology & Electronic Engineering Aims and scope Submit manuscript

Abstract

A distributed fault-tolerant strategy for the controller area network based electric swing system of hybrid excavators is proposed to achieve good performance under communication errors based on the adaptive compensation of the delays and packet dropouts. The adverse impacts of communication errors are effectively reduced by a novel delay compensation scheme, where the feedback signal and the control command are compensated in each control period in the central controller and the swing motor driver, respectively, without requiring additional network bandwidth. The recursive least-squares algorithm with forgetting factor algorithm is employed to identify the time-varying model parameters due to pose variation, and a reverse correction law is embedded into the feedback compensation in consecutive packet dropout scenarios to overcome the impacts of the model error. Simulations and practical experiments are conducted. The results show that the proposed fault-tolerant strategy can effectively reduce the communication-error-induced overshoot and response time variation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beza, M., Bongiorno, M., 2014. Application of recursive least squares algorithm with variable forgetting factor for frequency component estimation in a generic input signal. IEEE Trans. Ind. Appl., 50(2): 1168–1176. http://dx.doi.org/10.1109/TIA.2013.2279195

    Article  Google Scholar 

  • Du, Z., Yue, D., Hu, S., 2014. H-infinity stabilization for singular networked cascade control systems with state delay and disturbance. IEEE Trans. Ind. Inform., 10(2): 882–894. http://dx.doi.org/10.1109/TII.2013.2294114

    Article  Google Scholar 

  • Gao, D., Wang, Q., 2014. Health monitoring of controller area network in hybrid excavator based on the message response time. IEEE/ASME Int. Conf. on Advanced Intelligent Mechatronics, p.1634–1639. http://dx.doi.org/10.1109/AIM.2014.6878318

    Google Scholar 

  • Gao, D., Wang, Q., Lei, Y., et al., 2015. Online real-time estimation of response time for periodic messages in controller area networks. Math. Prob. Eng., 2015: 1–13. http://dx.doi.org/10.1155/2015/659623

    Google Scholar 

  • Gupta, R.A., Chow, M.Y., 2010. Networked control system: overview and research trends. IEEE Trans. Ind. Electron., 57(7): 2527–2535. http://dx.doi.org/10.1109/TIE.2009.2035462

    Article  Google Scholar 

  • ISO, 2015. Road Vehicles—Controller Area Network (CAN)—Part 1: Data Link Layer and Physical Signalling, ISO 11898-1:2015. International Organization for Stan-dardization, Geneva.

    Google Scholar 

  • Jin, K., Park, T., Lee, H., 2012. A control method to suppress the swing vibration of a hybrid excavator using sliding mode approach. Proc. Inst. Mech. Eng. C, 226(5): 1237–1253. http://dx.doi.org/10.1177/0954406211421260

    Article  Google Scholar 

  • Kagoshima, M., Komiyama, M., Nanjo, T., et al., 2007. Development of new hybrid excavator. Kobelco Technol. Rev., 27: 39–42.

    Google Scholar 

  • Katrasnik, T., 2007. Hybridization of powertrain and downsizing of IC ICE—a way to reduce fuel consumption and pollutant emissions—Part 1. Energy Conv. Manag., 48(5): 1411–1423. http://dx.doi.org/10.1016/j.enconman.2006.12.004

    Article  Google Scholar 

  • Kim, H., Choi, J., Yi, K., 2012. Development of supervisory control strategy for optimized fuel consumption of the compound hybrid excavator. Proc. Inst. Mech. Eng. D, 226(12): 1652–1666. http://dx.doi.org/10.1177/0954407012447019

    Article  Google Scholar 

  • Kim, J.Y., 2014. Anti-Rebounding Control Apparatus and Method in an Electrical Swing System of a Hybrid Excavator. E.P. Patent 2 690 224 A1.

    Google Scholar 

  • Kruszewski, A., Jiang, W.J., Fridman, E., et al., 2012. A switched system approach to exponential stabilization through communication network. IEEE Trans. Contr. Syst. Technol., 20(4): 887–900. http://dx.doi.org/10.1109/TCST.2011.2159793

    Article  Google Scholar 

  • Kwon, T., Lee, S., Sul, S., et al., 2010. Power control algorithm for hybrid excavator with super capacitor. IEEE Trans. Ind. Appl., 46(4): 1447–1455. http://dx.doi.org/10.1109/08IAS.2008.193

    Article  Google Scholar 

  • Lei, Y., Yuan, Y., Zhao, J., 2014. Model-based detection and monitoring of the intermittent connections for CAN networks. IEEE Trans. Ind. Electron., 61(6): 2912–2921. http://dx.doi.org/10.1109/TIE.2013.2272277

    Article  Google Scholar 

  • Lin, T., Wang, Q., Hu, B., et al., 2010a. Development of hybrid powered hydraulic construction machinery. Autom. Constr., 19(1): 11–19. http://dx.doi.org/10.1016/j.autcon.2009.09.005

    Article  Google Scholar 

  • Lin, T., Wang, Q., Hu, B., et al., 2010b. Research on the energy regeneration systems for hybrid hydraulic excavators. Autom. Constr., 19(8): 1016–1026. http://dx.doi.org/10.1016/j.autcon.2010.08.002

    Article  Google Scholar 

  • Liu, G.P., Xia, Y., Chen, J., et al., 2007. Networked predictive control of systems with random network delays in both forward and feedback channels. IEEE Trans. Ind. Electron., 54(3): 1282–1297. http://dx.doi.org/10.1109/TIE.2007.893073

    Article  Google Scholar 

  • Luck, R., Ray, A., 1990. An observer-based compensator for distributed delays. Automatica, 26(5): 903–908. http://dx.doi.org/10.1016/0005-1098(90)90007-5

    Article  MATH  Google Scholar 

  • Luck, R., Ray, A., 1994. Experimental verification of a delay compensation algorithm for integrated communication and control systems. Int. J. Contr., 59(6): 1357–1372. http://dx.doi.org/10.1080/00207179408923135

    Article  MATH  Google Scholar 

  • Nilsson, J., 1998. Real-Time Control Systems with Delays. PhD Thesis, Department of Automatic Control, Lund Institute of Technology, Lund, Sweden.

    MATH  Google Scholar 

  • Rahmani, B., Markazi, A.H.D., 2013. Variable selective control method for networked control systems. IEEE Trans. Contr. Syst. Technol., 21(3): 975–982. http://dx.doi.org/10.1109/TCST.2012.2194739

    Article  Google Scholar 

  • Shi, Y., Yu, B., 2011. Robust mixed H 2/H control of networked control systems with random time delays in both forward and backward communication links. Automatica, 47(4): 754–760. http://dx.doi.org/10.1016/j.automatica.2011.01.022

    Article  MathSciNet  MATH  Google Scholar 

  • Shi, Y., Huang, J., Yu, B., 2013. Robust tracking control of networked control systems application to a networked DC motor. IEEE Trans. Ind. Electron., 60(12): 5864–5874. http://dx.doi.org/10.1109/TIE.2012.2233692

    Article  Google Scholar 

  • Shuai, Z., Zhang, H., Wang, J., et al., 2014. Combined AFS and DYC control of four-wheel-independent-drive electric vehicles over CAN network with time-varying delays. IEEE Trans. Veh. Technol., 63(2): 591–602. http://dx.doi.org/10.1109/TVT.2013.2279843

    Article  Google Scholar 

  • Song, H., Liu, G.P., Yu, L., 2013. Networked predictive control of uncertain systems with multiple feedback channels. IEEE Trans. Ind. Electron., 60(11): 5228–5238. http://dx.doi.org/10.1109/TIE.2012.2225398

    Article  Google Scholar 

  • Tian, Y.C., Levy, D., 2008. Compensation for control packet dropout in networked control systems. Inf. Sci., 178(5): 1263–1278. http://dx.doi.org/10.1016/j.ins.2007.10.012

    Article  MATH  Google Scholar 

  • Tipsuwan, Y., Chow, M.Y., 2004. Gain scheduler middleware: a methodology to enable existing controllers for networked control and teleoperation—part I: networked control. IEEE Trans. Ind. Electron., 51(6): 1218–1227. http://dx.doi.org/10.1109/TIE.2004.837866

    Article  Google Scholar 

  • Wang, D., Guan, C., Pan, S., et al., 2009. Performance analysis of hydraulic excavator powertrain hybridization. Autom. Constr., 18(3): 249–257. http://dx.doi.org/10.1016/j.autcon.2008.10.001

    Article  Google Scholar 

  • Wang, Q., Zhang, Y., Xiao, Q., 2005. Evaluation for energy saving effect and simulation research on energy saving of hydraulic system in hybrid construction machinery. Chin. J. Mech. Eng., 41(12): 35–140. http://dx.doi.org/10.3901/JME.2005.12.135

    Google Scholar 

  • Wang, T., Wang, Q., 2014. An energy-saving pressure-compensated hydraulic system with electrical approach. IEEE/ASME Trans. Mechatron., 19(2): 570–578. http://dx.doi.org/10.1109/TMECH.2013.2250296

    Article  Google Scholar 

  • Wang, Y., Sun, X., Wang, Z., et al., 2014. Construction of Lyapunov–Krasovskii functionals for switched nonlinear systems with input delay. Automatica, 50(4): 1249–1253. http://dx.doi.org/10.1016/j.automatica.2014.02.029

    Article  MathSciNet  MATH  Google Scholar 

  • Xiao, Q., Wang, Q., Zhang, Y., 2008. Control strategies of power system in hybrid hydraulic excavator. Autom. Constr., 17(4): 361–367. http://dx.doi.org/10.1016/j.autcon.2007.05.014

    Article  Google Scholar 

  • Yang, R., Liu, G.P., Shi, P., et al., 2014. Predictive output feedback control for networked control systems. IEEE Trans. Ind. Electron., 61(1): 512–520. http://dx.doi.org/10.1109/TIE.2013.2248339

    Article  Google Scholar 

  • Yao, H., Wang, Q., 2015. The control strategy of improving the stability of powertrain for compound hybrid power excavator. Proc. Inst. Mech. Eng. D J. Autom. Eng., 229(5): 1–15. http://dx.doi.org/10.1177/0954407015574809

    MathSciNet  Google Scholar 

  • Zhang, L., Gao, H., Kaynak, O., 2013. Network-induced constraints in networked control systems—a survey. IEEE Trans. Ind. Inf., 9(1): 403–416. http://dx.doi.org/10.1109/TII.2012.2219540

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Lei.

Additional information

Project supported by the National Natural Science Foundation of China (Nos. 51475414, 51475422, and 51521064) and the National Basic Research Program (973) of China (No. 2013CB035405)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Dh., Wang, Qf. & Lei, Y. Distributed fault-tolerant strategy for electric swing system of hybrid excavators under communication errors. Frontiers Inf Technol Electronic Eng 18, 941–954 (2017). https://doi.org/10.1631/FITEE.1601021

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/FITEE.1601021

Key words

CLC number

Navigation