Abstract
A distributed fault-tolerant strategy for the controller area network based electric swing system of hybrid excavators is proposed to achieve good performance under communication errors based on the adaptive compensation of the delays and packet dropouts. The adverse impacts of communication errors are effectively reduced by a novel delay compensation scheme, where the feedback signal and the control command are compensated in each control period in the central controller and the swing motor driver, respectively, without requiring additional network bandwidth. The recursive least-squares algorithm with forgetting factor algorithm is employed to identify the time-varying model parameters due to pose variation, and a reverse correction law is embedded into the feedback compensation in consecutive packet dropout scenarios to overcome the impacts of the model error. Simulations and practical experiments are conducted. The results show that the proposed fault-tolerant strategy can effectively reduce the communication-error-induced overshoot and response time variation.
Similar content being viewed by others
References
Beza, M., Bongiorno, M., 2014. Application of recursive least squares algorithm with variable forgetting factor for frequency component estimation in a generic input signal. IEEE Trans. Ind. Appl., 50(2): 1168–1176. http://dx.doi.org/10.1109/TIA.2013.2279195
Du, Z., Yue, D., Hu, S., 2014. H-infinity stabilization for singular networked cascade control systems with state delay and disturbance. IEEE Trans. Ind. Inform., 10(2): 882–894. http://dx.doi.org/10.1109/TII.2013.2294114
Gao, D., Wang, Q., 2014. Health monitoring of controller area network in hybrid excavator based on the message response time. IEEE/ASME Int. Conf. on Advanced Intelligent Mechatronics, p.1634–1639. http://dx.doi.org/10.1109/AIM.2014.6878318
Gao, D., Wang, Q., Lei, Y., et al., 2015. Online real-time estimation of response time for periodic messages in controller area networks. Math. Prob. Eng., 2015: 1–13. http://dx.doi.org/10.1155/2015/659623
Gupta, R.A., Chow, M.Y., 2010. Networked control system: overview and research trends. IEEE Trans. Ind. Electron., 57(7): 2527–2535. http://dx.doi.org/10.1109/TIE.2009.2035462
ISO, 2015. Road Vehicles—Controller Area Network (CAN)—Part 1: Data Link Layer and Physical Signalling, ISO 11898-1:2015. International Organization for Stan-dardization, Geneva.
Jin, K., Park, T., Lee, H., 2012. A control method to suppress the swing vibration of a hybrid excavator using sliding mode approach. Proc. Inst. Mech. Eng. C, 226(5): 1237–1253. http://dx.doi.org/10.1177/0954406211421260
Kagoshima, M., Komiyama, M., Nanjo, T., et al., 2007. Development of new hybrid excavator. Kobelco Technol. Rev., 27: 39–42.
Katrasnik, T., 2007. Hybridization of powertrain and downsizing of IC ICE—a way to reduce fuel consumption and pollutant emissions—Part 1. Energy Conv. Manag., 48(5): 1411–1423. http://dx.doi.org/10.1016/j.enconman.2006.12.004
Kim, H., Choi, J., Yi, K., 2012. Development of supervisory control strategy for optimized fuel consumption of the compound hybrid excavator. Proc. Inst. Mech. Eng. D, 226(12): 1652–1666. http://dx.doi.org/10.1177/0954407012447019
Kim, J.Y., 2014. Anti-Rebounding Control Apparatus and Method in an Electrical Swing System of a Hybrid Excavator. E.P. Patent 2 690 224 A1.
Kruszewski, A., Jiang, W.J., Fridman, E., et al., 2012. A switched system approach to exponential stabilization through communication network. IEEE Trans. Contr. Syst. Technol., 20(4): 887–900. http://dx.doi.org/10.1109/TCST.2011.2159793
Kwon, T., Lee, S., Sul, S., et al., 2010. Power control algorithm for hybrid excavator with super capacitor. IEEE Trans. Ind. Appl., 46(4): 1447–1455. http://dx.doi.org/10.1109/08IAS.2008.193
Lei, Y., Yuan, Y., Zhao, J., 2014. Model-based detection and monitoring of the intermittent connections for CAN networks. IEEE Trans. Ind. Electron., 61(6): 2912–2921. http://dx.doi.org/10.1109/TIE.2013.2272277
Lin, T., Wang, Q., Hu, B., et al., 2010a. Development of hybrid powered hydraulic construction machinery. Autom. Constr., 19(1): 11–19. http://dx.doi.org/10.1016/j.autcon.2009.09.005
Lin, T., Wang, Q., Hu, B., et al., 2010b. Research on the energy regeneration systems for hybrid hydraulic excavators. Autom. Constr., 19(8): 1016–1026. http://dx.doi.org/10.1016/j.autcon.2010.08.002
Liu, G.P., Xia, Y., Chen, J., et al., 2007. Networked predictive control of systems with random network delays in both forward and feedback channels. IEEE Trans. Ind. Electron., 54(3): 1282–1297. http://dx.doi.org/10.1109/TIE.2007.893073
Luck, R., Ray, A., 1990. An observer-based compensator for distributed delays. Automatica, 26(5): 903–908. http://dx.doi.org/10.1016/0005-1098(90)90007-5
Luck, R., Ray, A., 1994. Experimental verification of a delay compensation algorithm for integrated communication and control systems. Int. J. Contr., 59(6): 1357–1372. http://dx.doi.org/10.1080/00207179408923135
Nilsson, J., 1998. Real-Time Control Systems with Delays. PhD Thesis, Department of Automatic Control, Lund Institute of Technology, Lund, Sweden.
Rahmani, B., Markazi, A.H.D., 2013. Variable selective control method for networked control systems. IEEE Trans. Contr. Syst. Technol., 21(3): 975–982. http://dx.doi.org/10.1109/TCST.2012.2194739
Shi, Y., Yu, B., 2011. Robust mixed H 2/H ∞ control of networked control systems with random time delays in both forward and backward communication links. Automatica, 47(4): 754–760. http://dx.doi.org/10.1016/j.automatica.2011.01.022
Shi, Y., Huang, J., Yu, B., 2013. Robust tracking control of networked control systems application to a networked DC motor. IEEE Trans. Ind. Electron., 60(12): 5864–5874. http://dx.doi.org/10.1109/TIE.2012.2233692
Shuai, Z., Zhang, H., Wang, J., et al., 2014. Combined AFS and DYC control of four-wheel-independent-drive electric vehicles over CAN network with time-varying delays. IEEE Trans. Veh. Technol., 63(2): 591–602. http://dx.doi.org/10.1109/TVT.2013.2279843
Song, H., Liu, G.P., Yu, L., 2013. Networked predictive control of uncertain systems with multiple feedback channels. IEEE Trans. Ind. Electron., 60(11): 5228–5238. http://dx.doi.org/10.1109/TIE.2012.2225398
Tian, Y.C., Levy, D., 2008. Compensation for control packet dropout in networked control systems. Inf. Sci., 178(5): 1263–1278. http://dx.doi.org/10.1016/j.ins.2007.10.012
Tipsuwan, Y., Chow, M.Y., 2004. Gain scheduler middleware: a methodology to enable existing controllers for networked control and teleoperation—part I: networked control. IEEE Trans. Ind. Electron., 51(6): 1218–1227. http://dx.doi.org/10.1109/TIE.2004.837866
Wang, D., Guan, C., Pan, S., et al., 2009. Performance analysis of hydraulic excavator powertrain hybridization. Autom. Constr., 18(3): 249–257. http://dx.doi.org/10.1016/j.autcon.2008.10.001
Wang, Q., Zhang, Y., Xiao, Q., 2005. Evaluation for energy saving effect and simulation research on energy saving of hydraulic system in hybrid construction machinery. Chin. J. Mech. Eng., 41(12): 35–140. http://dx.doi.org/10.3901/JME.2005.12.135
Wang, T., Wang, Q., 2014. An energy-saving pressure-compensated hydraulic system with electrical approach. IEEE/ASME Trans. Mechatron., 19(2): 570–578. http://dx.doi.org/10.1109/TMECH.2013.2250296
Wang, Y., Sun, X., Wang, Z., et al., 2014. Construction of Lyapunov–Krasovskii functionals for switched nonlinear systems with input delay. Automatica, 50(4): 1249–1253. http://dx.doi.org/10.1016/j.automatica.2014.02.029
Xiao, Q., Wang, Q., Zhang, Y., 2008. Control strategies of power system in hybrid hydraulic excavator. Autom. Constr., 17(4): 361–367. http://dx.doi.org/10.1016/j.autcon.2007.05.014
Yang, R., Liu, G.P., Shi, P., et al., 2014. Predictive output feedback control for networked control systems. IEEE Trans. Ind. Electron., 61(1): 512–520. http://dx.doi.org/10.1109/TIE.2013.2248339
Yao, H., Wang, Q., 2015. The control strategy of improving the stability of powertrain for compound hybrid power excavator. Proc. Inst. Mech. Eng. D J. Autom. Eng., 229(5): 1–15. http://dx.doi.org/10.1177/0954407015574809
Zhang, L., Gao, H., Kaynak, O., 2013. Network-induced constraints in networked control systems—a survey. IEEE Trans. Ind. Inf., 9(1): 403–416. http://dx.doi.org/10.1109/TII.2012.2219540
Author information
Authors and Affiliations
Corresponding author
Additional information
Project supported by the National Natural Science Foundation of China (Nos. 51475414, 51475422, and 51521064) and the National Basic Research Program (973) of China (No. 2013CB035405)
Rights and permissions
About this article
Cite this article
Gao, Dh., Wang, Qf. & Lei, Y. Distributed fault-tolerant strategy for electric swing system of hybrid excavators under communication errors. Frontiers Inf Technol Electronic Eng 18, 941–954 (2017). https://doi.org/10.1631/FITEE.1601021
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1631/FITEE.1601021
Key words
- Fault tolerant
- Delay compensation
- Controller area network
- Communication errors
- Electric swing system of hybrid excavator