Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Abstract

The Clifford Fourier transform (CFT) can be applied to both vector and scalar fields. However, due to problems with big data, CFT is not efficient, because the algorithm is calculated in each semaphore. The sparse fast Fourier transform (sFFT) theory deals with the big data problem by using input data selectively. This has inspired us to create a new algorithm called sparse fast CFT (SFCFT), which can greatly improve the computing performance in scalar and vector fields. The experiments are implemented using the scalar field and grayscale and color images, and the results are compared with those using FFT, CFT, and sFFT. The results demonstrate that SFCFT can effectively improve the performance of multivector signal processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Batard, T., Berthier, M., Saint-Jean, C., 2010. Clifford–Fourier transform for color image processing. In: Bayro-Corrochano, E., Scheuermann, G. (Eds.), Geometric Algebra Computing. Springer London, London, UK, p.135–162. https://doi.org/10.1007/978-1-84996-108-0_8

    Chapter  Google Scholar 

  • Bujack, R., Scheuermann, G., Hitzer, E., 2015. Demystification of the geometric Fourier transforms and resulting convolution theorems. Math. Meth. Appl. Sci., 39(7): 1877–1890. https://doi.org/10.1002/mma.3607

    Article  MathSciNet  Google Scholar 

  • Cao, W.M., Feng, H., 2010. Geometric Algebra in Biomimetic Pattern Recognition and Signal Processing. Science Press, Beijing, China (in Chinese).

    Google Scholar 

  • Cao, W.M., Liu, H., Xu, C., et al., 2013. 3D medical image registration based on conformal geometric algebra. Sci. China Inform. Sci., 43(2): 254–274. https://doi.org/10.1360/112012-592

    Google Scholar 

  • Ebling, J., Scheuermann, G., 2003. Clifford convolution and pattern matching on vector fields. IEEE Visualization, p.193–200. https://doi.org/10.1109/VISUAL.2003.1250372

    Google Scholar 

  • Ebling, J., Scheuermann, G., 2005. Clifford Fourier transform on vector fields. IEEE Trans. Visual. Comput. Graph., 11(4): 469–479. https://doi.org/10.1109/TVCG.2005.54

    Article  Google Scholar 

  • Evans, C.J., Sangwine, S.J., Ell, T.A., 2000. Colour-sensitive edge detection using hypercomplex filters. 10th European Signal Processing Conf., p.1–4.

    Google Scholar 

  • Frigo, M., Johnson, S.G., 2005. The design and implementation of FFTW3. Proc. IEEE, 93(2): 216–231. https://doi.org/10.1109/JPROC.2004.840301

    Article  Google Scholar 

  • Gilbert, A., Indyk, P., 2010. Sparse recovery using sparse matrices. Proc. IEEE, 98(6): 937–947. https://doi.org/10.1109/JPROC.2010.2045092

    Article  Google Scholar 

  • Gilbert, A.C., Indyk, P., Iwen, M., et al., 2014. Recent developments in the sparse Fourier transform: a compressed Fourier transform for big data. IEEE Signal Process. Mag., 31(5): 91–100. https://doi.org/10.1109/MSP.2014.2329131

    Article  Google Scholar 

  • Hassanieh, H., Adib, F., Katabi, D., et al., 2012a. Faster GPS via the sparse Fourier transform. Proc. 18th Annual Int. Conf. on Mobile Computing and Networking, p.353–364. https://doi.org/10.1145/2348543.2348587

    Google Scholar 

  • Hassanieh, H., Indyk, P., Katabi, D., et al., 2012b. Nearly optimal sparse Fourier transform. Proc. 44th Annual ACM Symp. on Theory of Computing, p.563–578. https://doi.org/10.1145/2213977.2214029

    MATH  Google Scholar 

  • Hassanieh, H., Indyk, P., Katabi, D., et al., 2012c. Simple and practical algorithm for sparse Fourier transform. Proc. 23rd Annual ACM-SIAM Symp. on Discrete Algorithms, p.1183–1194. https://doi.org/10.1137/1.9781611973099.93

    MATH  Google Scholar 

  • Hassanieh, H., Shi, L., Abari, O., et al., 2014. GHz-wide sensing and decoding using the sparse Fourier transform. Proc. IEEE INFOCOM, p.2256–2264. https://doi.org/10.1109/INFOCOM.2014.6848169

    Google Scholar 

  • Hestenes, D., 1999. New Foundations for Classical Mechanics. Springer, New York, USA.

    MATH  Google Scholar 

  • Hestenes, D., Sobczyk, G., 1984. Clifford Algebra to Geometric Calculus. Springer, New York, USA.

    Book  Google Scholar 

  • Hitzer, E., 2012. Introduction to Clifford’s geometric algebra. SICE J. Contr. Meas. Syst. Integr., 4(1): 1–11.

    Google Scholar 

  • Hitzer, E., 2013. The Clifford Fourier transform in real Clifford algebras. Int. Conf. on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering, p.227–240.

    MATH  Google Scholar 

  • Hitzer, E., Mawardi, B., 2008. Clifford Fourier transform on multivector fields and uncertainty principles for dimensions n=2 (mod 4) and n=3 (mod 4). Adv. Appl. Clifford Alg., 18(3–4): 715–736. https://doi.org/10.1007/s00006-008-0098-3

    Article  Google Scholar 

  • Hitzer, E., Sangwine, S.J., 2013. Quaternion and Clifford Fourier transforms and wavelets. In: Hitzer, E., Stephen, J., Sangwine, S.J. (Eds.), Trends in Mathematic. Springer Basel, Basel, Switzerland. https://doi.org/10.1007/978-3-0348-0603-9

    Google Scholar 

  • Hitzer, E., Helmstetter, J., Abłamowicz, R., 2013. Square roots of–1 in real Clifford algebras. In: Hitzer, E., Stephen, J., Sangwine, S.J. (Eds.), Trends in Mathematic. Springer Basel, Basel, Switzerland. https://doi.org/10.1007/978-3-0348-0603-9_7

    MATH  Google Scholar 

  • Iwen, M.A., 2010. Combinatorial sublinear-time Fourier algorithms. Found. Comput. Math., 10(3): 303–338. https://doi.org/10.1007/s10208-009-9057-1

    Article  MathSciNet  Google Scholar 

  • Li, H.B., 2005. Conformal geometric algebra—a new framework for computational geometry. J. Comput. Aid. Des. Comput. Graph., 17(11): 2383–2393.

    Google Scholar 

  • Mishra, B., Wilson, P., Wilcock, R., 2015. A geometric algebra co-processor for color edge detection. Electronics, 4(1): 94–117. https://doi.org/10.3390/electronics4010094

    Article  Google Scholar 

  • Mueen, A., Nath, S., Liu, J., 2010. Fast approximate correlation for massive time-series data. Proc. ACM SIGMOD Int. Conf. on Management of Data, p.171–182. https://doi.org/10.1145/1807167.1807188

    Google Scholar 

  • Porat, E., Strauss, M.J., 2012. Sublinear time, measurementoptimal, sparse recovery for all. Proc. 23rd Annual ACM-SIAM Symp. on Discrete Algorithms, p.1215–1227. https://doi.org/10.1137/1.9781611973099.96

    Google Scholar 

  • Reich, W., Scheuermann, G., 2010. Analyzing real vector fields with Clifford convolution and Clifford–Fourier transform. In: Bayro-Corrochano, E., Scheuermann, G. (Eds.), Geometric Algebra Computing. Springer, London, UK, p.121–133. https://doi.org/10.1007/978-1-84996-108-0_7

    Chapter  Google Scholar 

  • Schlemmer, M., Hotz, I., Natarajan, V., et al., 2005. Fast Clifford Fourier transformation for unstructured vector field data. Proc. Int. Conf. on Numerical Grid Generation in Computational Field Simulations, p.101–110.

    Google Scholar 

  • Schumacher, J., Puschel, M., 2014. High-performance sparse fast Fourier transforms. IEEE Workshop on Signal Processing Systems, p.1–6. https://doi.org/10.1109/SiPS.2014.6986055

    Google Scholar 

  • Shi, L., Hassanieh, H., Davis, A., et al., 2014. Light field reconstruction using sparsity in the continuous Fourier domain. ACM Trans. Graph., 34(1), Article 12. https://doi.org/10.1145/2682631

    Google Scholar 

  • Smith, J.O., 2011. Spectral Audio Signal Processing. W3K Publishing, London, UK.

    Google Scholar 

  • Wang, R., Jing, L.B., Tao, L., et al., 2013. Digital watermarking algorithm for 3D point cloud model based on Clifford algebra. J. Shanghai Jiao Tong Univ., 47(12): 1863–1869.

    MathSciNet  Google Scholar 

  • Wang, R., Zhang, X., Cao, W.M., 2015. Clifford fuzzy support vector machines for classification. Adv. Appl. Clifford Alg., 26(2): 1–22. https://doi.org/10.1007/s00006-015-0616-z

    MathSciNet  Google Scholar 

  • Xie, W., Cao, W.M., Meng, S., 2008. Coverage analysis for sensor networks based on Clifford algebra. Sci. China Inform. Sci., 51(5): 460–475. https://doi.org/10.1007/s11432-008-0048-7

    Article  Google Scholar 

  • Xu, C., Liu, H., Ouyang, C.J., et al., 2011. Theory and application of Clifford pseudo-differential operator on multispectral image. Sci. Sin. Inform., 41(12): 1423–1435. https://doi.org/10.1360/zf2011-41-12-1423

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-ming Cao.

Additional information

Project supported by the National Natural Science Foundation of China (Nos. 61301027, 61375015, and 11274226)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, R., Zhou, Yx., Jin, Yl. et al. Sparse fast Clifford Fourier transform. Frontiers Inf Technol Electronic Eng 18, 1131–1141 (2017). https://doi.org/10.1631/FITEE.1500452

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/FITEE.1500452

Key words

CLC number

Navigation