Abstract
A lot of research has been done on multiple-valued logic (MVL) such as ternary logic in these years. MVL reduces the number of necessary operations and also decreases the chip area that would be used. Carbon nanotube field effect transistors (CNTFETs) are considered a viable alternative for silicon transistors (MOSFETs). Combining carbon nanotube transistors and MVL can produce a unique design that is faster and more flexible. In this paper, we design a new half adder and a new multiplier by nanotechnology using a ternary logic, which decreases the power consumption and chip surface and raises the speed. The presented design is simulated using CNTFET of Stanford University and HSPICE software, and the results are compared with those of other studies.
Similar content being viewed by others
References
Alkaldy, E., Navi, K., Sharifi, F., et al., 2014. An ultra highspeed (4; 2) compressor with a new design approach for nanotechnology based on the multi-input majority function. J. Comput. Theor. Nanosci., 11(7): 1691–1696. http://dx.doi.org/10.1166/jctn.2014.3552
Azimi, N., Hoseini, H., Shahsavari, A., 2014. Designing a novel ternary multiplier using CNTFET. Int. J. Mod. Educat. Comput. Sci., 6(11): 45–51. http://dx.doi.org/10.5815/ijmecs.2014.11.06
Butler, J.T., 1991. Multiple-Valued Logic in VLSI Design. IEEE Computer Society Press, Washington DC, USA.
Deng, J., Wong, H.P., 2007a. A compact SPICE model for carbon-nanotube field-effect transistors including nonidealities and its application-Part I: model of the intrinsic channel region. IEEE Trans. Electron Dev., 54(12): 3186–3194. http://dx.doi.org/10.1109/TED.2007.909030
Deng, J., Wong, H.P., 2007b. A compact SPICE model for carbon-nanotube field-effect transistors including nonidealities and its application-Part II: full device model and circuit performance benchmarking. IEEE Trans. Electron Dev., 54(12): 3195–3205. http://dx.doi.org/10.1109/TED.2007.909043
Etiemble, D., Israel, M., 1988. Comparison of binary and multivalued ICs according to VLSI criteria. Computer, 21(4): 28–42. http://dx.doi.org/10.1109/2.49
Haselman, M., Hauck, S., 2010. The future of integrated circuits: a survey of nanoelectronics. Proc. IEEE, 98(1): 11–38. http://dx.doi.org/10.1109/JPROC.2009.2032356
Heinze, S., Tersoff, J., Martel, R., et al., 2002. Carbon nanotubes as Schottky barrier transistors. Phys. Rev. Lett., 89(10): 106801. http://dx.doi.org/10.1103/PhysRevLett.89.106801
Iijima, S., 1991. Helical microtubules of graphitic carbon. Nature, 354(6348): 56–58. http://dx.doi.org/10.1038/354056a0
Javey, A., Tu, R., Farmer, D.B., et al., 2005. High performance n-type carbon nanotube field-effect transistors with chemically doped contacts. Nano Lett., 5(2): 345–348. http://dx.doi.org/10.1021/nl047931j
Keshavarzian, P., Navi, K., 2009. Universal ternary logic circuit design through carbon nanotube technology. Int. J. Nanotechnol., 6(10/11):942–953. http://dx.doi.org/10.1504/IJNT.2009.027557
Keshavarzian, P., Sarikhani, R., 2014. A novel CNTFET-based ternary full adder. Circ. Syst. Signal Process., 33(3): 665–679. http://dx.doi.org/10.1007/s00034-013-9672-6
Kotiyal, S., Thapliyal, H., Ranganathan, N., 2015. Reversible logic based multiplication computing unit using binary tree data structure. J. Supercomput., 71(7): 2668–2693. http://dx.doi.org/10.1007/s11227-015-1410-3
Lin, S., Kim, Y.B., Lombardi, F., 2009. A novel CNTFETbased ternary logic gate design. IEEE Int. Midwest Symp. on Circuits & Systems, p.435–438. http://dx.doi.org/10.1109/MWSCAS.2009.5236063
Lin, S., Kim, Y.B., Lombardi, F., 2011. CNTFET-based design of ternary logic gates and arithmetic circuits. IEEE Trans. Nanotechnol., 10(2): 217–225. http://dx.doi.org/10.1109/TNANO.2009.2036845
Martel, R., Schmidt, T., Shea, H., et al., 1998. Single-and multi-wall carbon nanotube field-effect transistors. Appl. Phys. Lett., 73(17): 2447–2449. http://dx.doi.org/10.1063/1.122477
Mirzaee, R.F., Moaiyeri, M.H., Maleknejad, M., et al., 2013. Dramatically low-transistor-count high-speed ternary adders. Proc. IEEE 43rd Int. Symp. on Multiple-Valued Logic, p.170–175. http://dx.doi.org/10.1109/ISMVL.2013.24
Moaiyeri, M.H., Doostaregan, A., Navi, K., 2011. Design of energy-efficient and robust ternary circuits for nanotechnology. IET Circ. Dev. Syst., 5(4): 285–296. http://dx.doi.org/10.1049/iet-cds.2010.0340
Moore, G.E., 1965. Cramming more components onto integrated circuits. Electronics, 38(8): 114–117.
Raychowdhury, A., Roy, K., 2004. A novel multiple-valued logic design using ballistic carbon nanotube FETs. Int. Symp. on Multiple-Valued Logic, p.14–19. http://dx.doi.org/10.1109/ISMVL.2004.1319913
Raychowdhury, A., Roy, K., 2005. Carbon-nanotube-based voltage-mode multiple-valued logic design. IEEE Trans. Nanotechnol., 4(2): 168–179. http://dx.doi.org/10.1109/TNANO.2004.842068
Raychowdhury, A., Roy, K., 2007. Carbon nanotube electronics: design of high-performance and low-power digital circuits. IEEE Trans. Circ. Syst. I, 54(11): 2391–2401. http://dx.doi.org/10.1109/TCSI.2007.907799
Sharifi, F., Moaiyeri, M.H., Navi, K., 2015. A novel quaternary full adder cell based on nanotechnology. Int. J. Mod. Educat. Comput. Sci., 7(3): 19–25. http://dx.doi.org/10.5815/ijmecs.2015.03.03
Tabrizchi, S., Sharifi, H., Sharifi, F., et al., 2016. A novel design approach for ternary compressor cells based on CNTFETs. Circ. Syst. Signal Process., 35(9): 3310–3322. http://dx.doi.org/10.1007/s00034-015-0197-z
Thapliyal, H., Ranganathan, N., 2013. Design of efficient reversible logic-based binary and BCD adder circuits. ACM J. Emerg. Technol. Comput. Syst., 9(3): 17. http://dx.doi.org/10.1145/2491682
Author information
Authors and Affiliations
Corresponding author
Additional information
ORCID: Keivan NAVI, http://orcid.org/0000-0002-5586-7766
Rights and permissions
About this article
Cite this article
Tabrizchi, S., Azimi, N. & Navi, K. A novel ternary half adder and multiplier based on carbon nanotube field effect transistors. J. Zhejiang Univ. - Sci. C 18, 423–433 (2017). https://doi.org/10.1631/FITEE.1500366
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1631/FITEE.1500366