Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

A novel ternary half adder and multiplier based on carbon nanotube field effect transistors

  • Published:
Frontiers of Information Technology & Electronic Engineering Aims and scope Submit manuscript

Abstract

A lot of research has been done on multiple-valued logic (MVL) such as ternary logic in these years. MVL reduces the number of necessary operations and also decreases the chip area that would be used. Carbon nanotube field effect transistors (CNTFETs) are considered a viable alternative for silicon transistors (MOSFETs). Combining carbon nanotube transistors and MVL can produce a unique design that is faster and more flexible. In this paper, we design a new half adder and a new multiplier by nanotechnology using a ternary logic, which decreases the power consumption and chip surface and raises the speed. The presented design is simulated using CNTFET of Stanford University and HSPICE software, and the results are compared with those of other studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alkaldy, E., Navi, K., Sharifi, F., et al., 2014. An ultra highspeed (4; 2) compressor with a new design approach for nanotechnology based on the multi-input majority function. J. Comput. Theor. Nanosci., 11(7): 1691–1696. http://dx.doi.org/10.1166/jctn.2014.3552

    Article  Google Scholar 

  • Azimi, N., Hoseini, H., Shahsavari, A., 2014. Designing a novel ternary multiplier using CNTFET. Int. J. Mod. Educat. Comput. Sci., 6(11): 45–51. http://dx.doi.org/10.5815/ijmecs.2014.11.06

    Article  Google Scholar 

  • Butler, J.T., 1991. Multiple-Valued Logic in VLSI Design. IEEE Computer Society Press, Washington DC, USA.

    Google Scholar 

  • Deng, J., Wong, H.P., 2007a. A compact SPICE model for carbon-nanotube field-effect transistors including nonidealities and its application-Part I: model of the intrinsic channel region. IEEE Trans. Electron Dev., 54(12): 3186–3194. http://dx.doi.org/10.1109/TED.2007.909030

    Article  Google Scholar 

  • Deng, J., Wong, H.P., 2007b. A compact SPICE model for carbon-nanotube field-effect transistors including nonidealities and its application-Part II: full device model and circuit performance benchmarking. IEEE Trans. Electron Dev., 54(12): 3195–3205. http://dx.doi.org/10.1109/TED.2007.909043

    Article  Google Scholar 

  • Etiemble, D., Israel, M., 1988. Comparison of binary and multivalued ICs according to VLSI criteria. Computer, 21(4): 28–42. http://dx.doi.org/10.1109/2.49

    Article  Google Scholar 

  • Haselman, M., Hauck, S., 2010. The future of integrated circuits: a survey of nanoelectronics. Proc. IEEE, 98(1): 11–38. http://dx.doi.org/10.1109/JPROC.2009.2032356

    Article  Google Scholar 

  • Heinze, S., Tersoff, J., Martel, R., et al., 2002. Carbon nanotubes as Schottky barrier transistors. Phys. Rev. Lett., 89(10): 106801. http://dx.doi.org/10.1103/PhysRevLett.89.106801

    Article  Google Scholar 

  • Iijima, S., 1991. Helical microtubules of graphitic carbon. Nature, 354(6348): 56–58. http://dx.doi.org/10.1038/354056a0

    Article  Google Scholar 

  • Javey, A., Tu, R., Farmer, D.B., et al., 2005. High performance n-type carbon nanotube field-effect transistors with chemically doped contacts. Nano Lett., 5(2): 345–348. http://dx.doi.org/10.1021/nl047931j

    Article  Google Scholar 

  • Keshavarzian, P., Navi, K., 2009. Universal ternary logic circuit design through carbon nanotube technology. Int. J. Nanotechnol., 6(10/11):942–953. http://dx.doi.org/10.1504/IJNT.2009.027557

    Article  Google Scholar 

  • Keshavarzian, P., Sarikhani, R., 2014. A novel CNTFET-based ternary full adder. Circ. Syst. Signal Process., 33(3): 665–679. http://dx.doi.org/10.1007/s00034-013-9672-6

    Article  Google Scholar 

  • Kotiyal, S., Thapliyal, H., Ranganathan, N., 2015. Reversible logic based multiplication computing unit using binary tree data structure. J. Supercomput., 71(7): 2668–2693. http://dx.doi.org/10.1007/s11227-015-1410-3

    Article  Google Scholar 

  • Lin, S., Kim, Y.B., Lombardi, F., 2009. A novel CNTFETbased ternary logic gate design. IEEE Int. Midwest Symp. on Circuits & Systems, p.435–438. http://dx.doi.org/10.1109/MWSCAS.2009.5236063

    Google Scholar 

  • Lin, S., Kim, Y.B., Lombardi, F., 2011. CNTFET-based design of ternary logic gates and arithmetic circuits. IEEE Trans. Nanotechnol., 10(2): 217–225. http://dx.doi.org/10.1109/TNANO.2009.2036845

    Article  Google Scholar 

  • Martel, R., Schmidt, T., Shea, H., et al., 1998. Single-and multi-wall carbon nanotube field-effect transistors. Appl. Phys. Lett., 73(17): 2447–2449. http://dx.doi.org/10.1063/1.122477

    Article  Google Scholar 

  • Mirzaee, R.F., Moaiyeri, M.H., Maleknejad, M., et al., 2013. Dramatically low-transistor-count high-speed ternary adders. Proc. IEEE 43rd Int. Symp. on Multiple-Valued Logic, p.170–175. http://dx.doi.org/10.1109/ISMVL.2013.24

    Google Scholar 

  • Moaiyeri, M.H., Doostaregan, A., Navi, K., 2011. Design of energy-efficient and robust ternary circuits for nanotechnology. IET Circ. Dev. Syst., 5(4): 285–296. http://dx.doi.org/10.1049/iet-cds.2010.0340

    Article  Google Scholar 

  • Moore, G.E., 1965. Cramming more components onto integrated circuits. Electronics, 38(8): 114–117.

    Google Scholar 

  • Raychowdhury, A., Roy, K., 2004. A novel multiple-valued logic design using ballistic carbon nanotube FETs. Int. Symp. on Multiple-Valued Logic, p.14–19. http://dx.doi.org/10.1109/ISMVL.2004.1319913

    Chapter  Google Scholar 

  • Raychowdhury, A., Roy, K., 2005. Carbon-nanotube-based voltage-mode multiple-valued logic design. IEEE Trans. Nanotechnol., 4(2): 168–179. http://dx.doi.org/10.1109/TNANO.2004.842068

    Article  Google Scholar 

  • Raychowdhury, A., Roy, K., 2007. Carbon nanotube electronics: design of high-performance and low-power digital circuits. IEEE Trans. Circ. Syst. I, 54(11): 2391–2401. http://dx.doi.org/10.1109/TCSI.2007.907799

    Google Scholar 

  • Sharifi, F., Moaiyeri, M.H., Navi, K., 2015. A novel quaternary full adder cell based on nanotechnology. Int. J. Mod. Educat. Comput. Sci., 7(3): 19–25. http://dx.doi.org/10.5815/ijmecs.2015.03.03

    Article  Google Scholar 

  • Tabrizchi, S., Sharifi, H., Sharifi, F., et al., 2016. A novel design approach for ternary compressor cells based on CNTFETs. Circ. Syst. Signal Process., 35(9): 3310–3322. http://dx.doi.org/10.1007/s00034-015-0197-z

    Article  MathSciNet  Google Scholar 

  • Thapliyal, H., Ranganathan, N., 2013. Design of efficient reversible logic-based binary and BCD adder circuits. ACM J. Emerg. Technol. Comput. Syst., 9(3): 17. http://dx.doi.org/10.1145/2491682

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keivan Navi.

Additional information

ORCID: Keivan NAVI, http://orcid.org/0000-0002-5586-7766

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tabrizchi, S., Azimi, N. & Navi, K. A novel ternary half adder and multiplier based on carbon nanotube field effect transistors. J. Zhejiang Univ. - Sci. C 18, 423–433 (2017). https://doi.org/10.1631/FITEE.1500366

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/FITEE.1500366

Key words

CLC number

Navigation