Abstract
Social tagging systems are widely applied in Web 2.0. Many users use these systems to create, organize, manage, and share Internet resources freely. However, many ambiguous and uncontrolled tags produced by social tagging systems not only worsen users’ experience, but also restrict resources’ retrieval efficiency. Tag clustering can aggregate tags with similar semantics together, and help mitigate the above problems. In this paper, we first present a common co-occurrence group similarity based approach, which employs the ternary relation among users, resources, and tags to measure the semantic relevance between tags. Then we propose a spectral clustering method to address the high dimensionality and sparsity of the annotating data. Finally, experimental results show that the proposed method is useful and efficient.
Similar content being viewed by others
References
Begelman, G., Keller, P., Smadja, F., 2006. Automated tag clustering: improving search and exploration in the tag space. Proc. 15th Int. World Wide Web Conf., p.15–33.
Bischoff, K., Firan, C.S., Nejdl, W., et al., 2008. Can all tags be used for search? Proc. 17th ACM Conf. on Information and Knowledge Management, p.193–202. http://dx.doi.org/10.1145/1458082.1458112
Cui, J.W., Liu, H.Y., He, J., et al., 2011. TagClus: a random walk-based method for tag clustering. Knowl. Inform. Syst., 27(2):193–225. http://dx.doi.org/10.1007/s10115-010-0307-y
Cuzzocrea, A., 2006. Combining multidimensional user models and knowledge representation and management techniques for making web services knowledge-aware. Web Intell. Agent Syst., 4(3):289–312.
Cuzzocrea, A., Mastroianni, C., 2003. A reference architecture for knowledge management-based web systems. Proc. 4th Int. Conf. on Web Information Systems Engineering, p.347–351. http://dx.doi.org/10.1109/WISE.2003.1254509
Dattolo, A., Eynard, D., Mazzola, L., 2011. An integrated approach to discover tag semantics. Proc. ACM Symp. on Applied Computing, p.814–820. http://dx.doi.org/10.1145/1982185.1982359
Deutsch, S., Schrammel, J., Tscheligi, M., 2011. Comparing different layouts of tag clouds: findings on visual perception. Human Aspects Visual., 6431:23–23. http://dx.doi.org/10.1007/978-3-642-19641-6_3
Dunn, J.C., 1974. Well-separated clusters and optimal fuzzypartitions. J. Cybern., 4(1):95–104. http://dx.doi.org/10.1080/01969727408546059
Furnas, G.W., Fake, C., von Ahn, L., et al., 2006. Why do tagging systems work? Proc. Extended Abstracts on Human Factors in Computing Systems, p.36–39. http://dx.doi.org/10.1145/1125451.1125462
Gemmell, J., Shepitsen, A., Mobasher, B., et al., 2008. Personalizing navigation in folksonomies using hierarchical tag clustering. Proc. 10th Int. Conf. on Data Warehousing and Knowledge Discovery, p.196–205. http://dx.doi.org/10.1007/978-3-540-85836-2_19
Gu, M., Zha, H., Ding, C., et al., 2001. Spectral relaxation models and structure analysis for k-way graph clustering and bi-clustering. Available from http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.10.2657 [Accessed on Apr. 5, 2015].
Heymann, P., Garcia-Molina, H., 2006. Collaborative creation of communal hierarchical taxonomies in social tagging systems. Technical Report, No. 2006-10, Stanford University, USA.
Isabella, P., 2009. Folksonomies. Indexing and Retrieval in Web 2.0. Walter de Gruyter, Berlin. http://dx.doi.org/10.1515/9783598441851
Jiang, J.J., Conrath, D.W., 1997. Semantic similarity based on corpus statistics and lexical taxonomy. Proc. Int. Conf. of Research on Computational Linguistics, p.1–15.
Kaufman, L., Rousseeuw, P.J., 2008. Finding Groups in Data: an Introduction to Cluster Analysis. John Wiley & Sons, London, UK. http://dx.doi.org/10.1002/9780470316801
Knautz, K., Soubusta, S., Stock, W.G., 2010. Tag clusters as information retrieval interfaces. Proc. 43rd Hawaii Int. Conf. on System Sciences, p.1–10. http://dx.doi.org/10.1109/HICSS.2010.360
Laniado, D., Eynard, D., Colombetti, M., 2007. Using Word-Net to turn a folksonomy into a hierarchy of concepts. Proc. 4th Italian Semantic Web Workshop on Semantic Web Application and Perspectives, p.192–201.
Lehwark, P., Risi, S., Ultsch, A., 2008. Visualization and clustering of tagged music data. Proc. 31st Annual Conf. on Data Analysis, Machine Learning and Applications, p.673–680. http://dx.doi.org/10.1007/978-3-540-78246-9_79
Markines, B., Cattuto, C., Menczer, F., et al., 2009. Evaluating similarity measures for emergent semantics of social tagging. Proc. 18th Int. Conf. on World Wide Web, p.641–650. http://dx.doi.org/10.1145/1526709.1526796
Marlow, C., Naaman, M., Boyd, D., et al., 2006. HT06, tagging paper, taxonomy, Flickr, academic article, to read. Proc. 17th Conf. on Hypertext and Hypermedia, p.31–40. http://dx.doi.org/10.1145/1149941.1149949
Mathes, A., 2004. Folksonomies—cooperative classification and communication through shared metadata. Available from http://www.adammathes.com/academic/ computer-mediated-communication/folksonomies.html [Accessed on Apr. 5, 2015].
Michlmayr, E., Cayzer, S., 2007. Learning user profiles from tagging data and leveraging them for personal(ized) information access. Proc. 16th Int. World Wide Web Conf., p.1–7.
Ng, A.Y., Jordan, M.I., Weiss, Y., 2002. On spectral clustering: analysis and an algorithm. Proc. Conf. Advances in Neural Information Processing Systems, p.849–856.
Noll, M.G., Meinel, C., 2007. Web search personalization via social bookmarking and tagging. Proc. 6th Int. Semantic Web Conf. and 2nd Asian Semantic Web Conf. on the Semantic Web, p.367–380. http://dx.doi.org/10.1007/978-3-540-76298-0_27
Noruzi, A., 2006. Folksonomies: (un)controlled vocabulary? Knowl. Organ., 33(4):199–203.
Rivadeneira, A.W., Gruen, D.M., Muller, M.J., et al., 2007. Getting our head in the clouds: toward evaluation studies of tagclouds. Proc. SIGCHI Conf. on Human Factors in Computing Systems, p.995–998. http://dx.doi.org/10.1145/1240624.1240775
Salton, G., 1983. Introduction to Modern Information Retrieval. McGraw-Hill College, New York, USA. http://dx.doi.org/10.1016/0306-4573(83)90062-6
Shepitsen, A., Gemmell, J., Mobasher, B., et al., 2008. Personalized recommendation in social tagging systems using hierarchical clustering. Proc. ACM Conf. on Recommender Systems, p.259–266. http://dx.doi.org/10.1145/1454008.1454048
Shi, J., Malik, J., 2000. Normalized cuts and image segmentation. IEEE Trans. Patt. Anal. Mach. Intell., 22(8):888–905. http://dx.doi.org/10.1109/34.868688
Shirky, C., 2004. Folksonomy. Available from http://www.corante.com/many/archives/2004/08/25/-folksonomy.php [Accessed on Apr. 5, 2015].
Simpson, E., 2008. Clustering tags in enterprise and web folksonomies. Proc. Int. Conf. on Weblogs and Social Media, p.222–223.
Suchanek, F.M., Vojnovic, M., Gunawardena, D., 2008. Social tags: meaning and suggestions. Proc. 17th ACM Conf. on Information and Knowledge Management, p.223–232. http://dx.doi.org/10.1145/1458082.1458114
Szomszor, M., Cattuto, C., Alani, H., et al., 2007. Folksonomies, the Semantic Web, and Movie Recommendation. Proc. 4th European Semantic Web Conf., p.71–84.
Van Damme, C., Hepp, M., Siorpaes, K., 2007. Folksontology: an integrated approach for turning folksonomies into ontologies. Proc. Workshop on Bridging the Gap Between Semantic Web and Web2.0, p.57–70.
Vanderlei, T.A., Durão, F.A., Martins, A.C., et al., 2007. A cooperative classification mechanism for search and retrieval software components. Proc. ACM Symp. on Applied Computing, p.866–871. http://dx.doi.org/10.1145/1244002.1244192
Vander Wal, T., 2004. Folksonomy. Available from http://vanderwal.net/essays/051130/folksonomy.pdf [Accessed on Apr. 5, 2015].
Vandic, D., van Dam, J.W., Hogenboom, F., et al., 2011. A semantic clustering-based approach for searching and browsing tag spaces. Proc. ACM Symp. on Applied Computing, p.1693–1699. http://dx.doi.org/10.1145/1982185.1982538
Xu, G.D., Zong, Y., Jin, P., et al., 2015. KIPTC: a kernel information propagation tag clustering algorithm. J. Intell. Inform. Syst., 45(1):95–112. http://dx.doi.org/10.1007/s10844-013-0262-7
Author information
Authors and Affiliations
Corresponding author
Additional information
Project supported by the National Natural Science Foundation of China (Nos. 61273292, 61303131, 51474007, and 51374114) and the MOE Humanities and Social Science Research on Youth Foundation of China (No. 13YJCZH077)
ORCID: Hui-zong LI, http://orcid.org/0000-0002-1459-989X
Rights and permissions
About this article
Cite this article
Li, Hz., Hu, Xg., Lin, Yj. et al. A social tag clustering method based on common co-occurrence group similarity. Frontiers Inf Technol Electronic Eng 17, 122–134 (2016). https://doi.org/10.1631/FITEE.1500187
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1631/FITEE.1500187