Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

A social tag clustering method based on common co-occurrence group similarity

  • Published:
Frontiers of Information Technology & Electronic Engineering Aims and scope Submit manuscript

Abstract

Social tagging systems are widely applied in Web 2.0. Many users use these systems to create, organize, manage, and share Internet resources freely. However, many ambiguous and uncontrolled tags produced by social tagging systems not only worsen users’ experience, but also restrict resources’ retrieval efficiency. Tag clustering can aggregate tags with similar semantics together, and help mitigate the above problems. In this paper, we first present a common co-occurrence group similarity based approach, which employs the ternary relation among users, resources, and tags to measure the semantic relevance between tags. Then we propose a spectral clustering method to address the high dimensionality and sparsity of the annotating data. Finally, experimental results show that the proposed method is useful and efficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Begelman, G., Keller, P., Smadja, F., 2006. Automated tag clustering: improving search and exploration in the tag space. Proc. 15th Int. World Wide Web Conf., p.15–33.

    Google Scholar 

  • Bischoff, K., Firan, C.S., Nejdl, W., et al., 2008. Can all tags be used for search? Proc. 17th ACM Conf. on Information and Knowledge Management, p.193–202. http://dx.doi.org/10.1145/1458082.1458112

    Google Scholar 

  • Cui, J.W., Liu, H.Y., He, J., et al., 2011. TagClus: a random walk-based method for tag clustering. Knowl. Inform. Syst., 27(2):193–225. http://dx.doi.org/10.1007/s10115-010-0307-y

    Article  Google Scholar 

  • Cuzzocrea, A., 2006. Combining multidimensional user models and knowledge representation and management techniques for making web services knowledge-aware. Web Intell. Agent Syst., 4(3):289–312.

    Google Scholar 

  • Cuzzocrea, A., Mastroianni, C., 2003. A reference architecture for knowledge management-based web systems. Proc. 4th Int. Conf. on Web Information Systems Engineering, p.347–351. http://dx.doi.org/10.1109/WISE.2003.1254509

    Google Scholar 

  • Dattolo, A., Eynard, D., Mazzola, L., 2011. An integrated approach to discover tag semantics. Proc. ACM Symp. on Applied Computing, p.814–820. http://dx.doi.org/10.1145/1982185.1982359

    Google Scholar 

  • Deutsch, S., Schrammel, J., Tscheligi, M., 2011. Comparing different layouts of tag clouds: findings on visual perception. Human Aspects Visual., 6431:23–23. http://dx.doi.org/10.1007/978-3-642-19641-6_3

    Article  Google Scholar 

  • Dunn, J.C., 1974. Well-separated clusters and optimal fuzzypartitions. J. Cybern., 4(1):95–104. http://dx.doi.org/10.1080/01969727408546059

    Article  Google Scholar 

  • Furnas, G.W., Fake, C., von Ahn, L., et al., 2006. Why do tagging systems work? Proc. Extended Abstracts on Human Factors in Computing Systems, p.36–39. http://dx.doi.org/10.1145/1125451.1125462

    Google Scholar 

  • Gemmell, J., Shepitsen, A., Mobasher, B., et al., 2008. Personalizing navigation in folksonomies using hierarchical tag clustering. Proc. 10th Int. Conf. on Data Warehousing and Knowledge Discovery, p.196–205. http://dx.doi.org/10.1007/978-3-540-85836-2_19

    Chapter  Google Scholar 

  • Gu, M., Zha, H., Ding, C., et al., 2001. Spectral relaxation models and structure analysis for k-way graph clustering and bi-clustering. Available from http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.10.2657 [Accessed on Apr. 5, 2015].

  • Heymann, P., Garcia-Molina, H., 2006. Collaborative creation of communal hierarchical taxonomies in social tagging systems. Technical Report, No. 2006-10, Stanford University, USA.

    Google Scholar 

  • Isabella, P., 2009. Folksonomies. Indexing and Retrieval in Web 2.0. Walter de Gruyter, Berlin. http://dx.doi.org/10.1515/9783598441851

  • Jiang, J.J., Conrath, D.W., 1997. Semantic similarity based on corpus statistics and lexical taxonomy. Proc. Int. Conf. of Research on Computational Linguistics, p.1–15.

    Google Scholar 

  • Kaufman, L., Rousseeuw, P.J., 2008. Finding Groups in Data: an Introduction to Cluster Analysis. John Wiley & Sons, London, UK. http://dx.doi.org/10.1002/9780470316801

    MATH  Google Scholar 

  • Knautz, K., Soubusta, S., Stock, W.G., 2010. Tag clusters as information retrieval interfaces. Proc. 43rd Hawaii Int. Conf. on System Sciences, p.1–10. http://dx.doi.org/10.1109/HICSS.2010.360

    Google Scholar 

  • Laniado, D., Eynard, D., Colombetti, M., 2007. Using Word-Net to turn a folksonomy into a hierarchy of concepts. Proc. 4th Italian Semantic Web Workshop on Semantic Web Application and Perspectives, p.192–201.

    Google Scholar 

  • Lehwark, P., Risi, S., Ultsch, A., 2008. Visualization and clustering of tagged music data. Proc. 31st Annual Conf. on Data Analysis, Machine Learning and Applications, p.673–680. http://dx.doi.org/10.1007/978-3-540-78246-9_79

    Google Scholar 

  • Markines, B., Cattuto, C., Menczer, F., et al., 2009. Evaluating similarity measures for emergent semantics of social tagging. Proc. 18th Int. Conf. on World Wide Web, p.641–650. http://dx.doi.org/10.1145/1526709.1526796

    Google Scholar 

  • Marlow, C., Naaman, M., Boyd, D., et al., 2006. HT06, tagging paper, taxonomy, Flickr, academic article, to read. Proc. 17th Conf. on Hypertext and Hypermedia, p.31–40. http://dx.doi.org/10.1145/1149941.1149949

    Google Scholar 

  • Mathes, A., 2004. Folksonomies—cooperative classification and communication through shared metadata. Available from http://www.adammathes.com/academic/ computer-mediated-communication/folksonomies.html [Accessed on Apr. 5, 2015].

  • Michlmayr, E., Cayzer, S., 2007. Learning user profiles from tagging data and leveraging them for personal(ized) information access. Proc. 16th Int. World Wide Web Conf., p.1–7.

    Google Scholar 

  • Ng, A.Y., Jordan, M.I., Weiss, Y., 2002. On spectral clustering: analysis and an algorithm. Proc. Conf. Advances in Neural Information Processing Systems, p.849–856.

    Google Scholar 

  • Noll, M.G., Meinel, C., 2007. Web search personalization via social bookmarking and tagging. Proc. 6th Int. Semantic Web Conf. and 2nd Asian Semantic Web Conf. on the Semantic Web, p.367–380. http://dx.doi.org/10.1007/978-3-540-76298-0_27

    Google Scholar 

  • Noruzi, A., 2006. Folksonomies: (un)controlled vocabulary? Knowl. Organ., 33(4):199–203.

    Google Scholar 

  • Rivadeneira, A.W., Gruen, D.M., Muller, M.J., et al., 2007. Getting our head in the clouds: toward evaluation studies of tagclouds. Proc. SIGCHI Conf. on Human Factors in Computing Systems, p.995–998. http://dx.doi.org/10.1145/1240624.1240775

    Chapter  Google Scholar 

  • Salton, G., 1983. Introduction to Modern Information Retrieval. McGraw-Hill College, New York, USA. http://dx.doi.org/10.1016/0306-4573(83)90062-6

    MATH  Google Scholar 

  • Shepitsen, A., Gemmell, J., Mobasher, B., et al., 2008. Personalized recommendation in social tagging systems using hierarchical clustering. Proc. ACM Conf. on Recommender Systems, p.259–266. http://dx.doi.org/10.1145/1454008.1454048

    Google Scholar 

  • Shi, J., Malik, J., 2000. Normalized cuts and image segmentation. IEEE Trans. Patt. Anal. Mach. Intell., 22(8):888–905. http://dx.doi.org/10.1109/34.868688

    Article  Google Scholar 

  • Shirky, C., 2004. Folksonomy. Available from http://www.corante.com/many/archives/2004/08/25/-folksonomy.php [Accessed on Apr. 5, 2015].

  • Simpson, E., 2008. Clustering tags in enterprise and web folksonomies. Proc. Int. Conf. on Weblogs and Social Media, p.222–223.

    Google Scholar 

  • Suchanek, F.M., Vojnovic, M., Gunawardena, D., 2008. Social tags: meaning and suggestions. Proc. 17th ACM Conf. on Information and Knowledge Management, p.223–232. http://dx.doi.org/10.1145/1458082.1458114

    Google Scholar 

  • Szomszor, M., Cattuto, C., Alani, H., et al., 2007. Folksonomies, the Semantic Web, and Movie Recommendation. Proc. 4th European Semantic Web Conf., p.71–84.

    Google Scholar 

  • Van Damme, C., Hepp, M., Siorpaes, K., 2007. Folksontology: an integrated approach for turning folksonomies into ontologies. Proc. Workshop on Bridging the Gap Between Semantic Web and Web2.0, p.57–70.

    Google Scholar 

  • Vanderlei, T.A., Durão, F.A., Martins, A.C., et al., 2007. A cooperative classification mechanism for search and retrieval software components. Proc. ACM Symp. on Applied Computing, p.866–871. http://dx.doi.org/10.1145/1244002.1244192

    Google Scholar 

  • Vander Wal, T., 2004. Folksonomy. Available from http://vanderwal.net/essays/051130/folksonomy.pdf [Accessed on Apr. 5, 2015].

  • Vandic, D., van Dam, J.W., Hogenboom, F., et al., 2011. A semantic clustering-based approach for searching and browsing tag spaces. Proc. ACM Symp. on Applied Computing, p.1693–1699. http://dx.doi.org/10.1145/1982185.1982538

    Google Scholar 

  • Xu, G.D., Zong, Y., Jin, P., et al., 2015. KIPTC: a kernel information propagation tag clustering algorithm. J. Intell. Inform. Syst., 45(1):95–112. http://dx.doi.org/10.1007/s10844-013-0262-7

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui-zong Li.

Additional information

Project supported by the National Natural Science Foundation of China (Nos. 61273292, 61303131, 51474007, and 51374114) and the MOE Humanities and Social Science Research on Youth Foundation of China (No. 13YJCZH077)

ORCID: Hui-zong LI, http://orcid.org/0000-0002-1459-989X

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Hz., Hu, Xg., Lin, Yj. et al. A social tag clustering method based on common co-occurrence group similarity. Frontiers Inf Technol Electronic Eng 17, 122–134 (2016). https://doi.org/10.1631/FITEE.1500187

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/FITEE.1500187

Keywords

CLC number

Navigation