Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Time-series prediction based on global fuzzy measure in social networks

  • Published:
Frontiers of Information Technology & Electronic Engineering Aims and scope Submit manuscript

Abstract

Social network analysis (SNA) is among the hottest topics of current research. Most measurements of SNA methods are certainty oriented, while in reality, the uncertainties in relationships are widely spread to be overridden. In this paper, fuzzy concept is introduced to model the uncertainty, and a similarity metric is used to build a fuzzy relation model among individuals in the social network. The traditional social network is transformed into a fuzzy network by replacing the traditional relations with fuzzy relation and calculating the global fuzzy measure such as network density and centralization. Finally, the trend of fuzzy network evolution is analyzed and predicted with a fuzzy Markov chain. Experimental results demonstrate that the fuzzy network has more superiority than the traditional network in describing the network evolution process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Araujo, E., 2008. Social relationship explained by fuzzy logic. Proc. IEEE Int. Conf. on Fuzzy Systems, p.2129–2134. [doi:10.1109/FUZZY.2008.4630664]

    Google Scholar 

  • Bastani, S., Jafarabad, A.K., Zarandi, M.H.F., 2013. Fuzzy models for link prediction in social networks. Int. J. Intell. Syst., 28(8):768–786. [doi:10.1002/int.21601]

    Article  Google Scholar 

  • Brunelli, M., Fedrizzi, M., 2009. A fuzzy approach to social network analysis. Proc. Int. Conf. on Advances in Social Network Analysis and Mining, p.225–230. [doi:10.1109/ASONAM.2009.72]

    Google Scholar 

  • Brunelli, M., Fedrizzi, M., Fedrizzi, M., 2014. Fuzzy m-ary adjacency relations in social network analysis: optimization and consensus evaluation. Inform. Fusion, 17:36–45. [doi:10.1016/j.inffus.2011.11.001]

    Article  Google Scholar 

  • de Sa, H.R., Prudencio, R.B.C., 2011. Supervised link prediction in weighted networks. Proc. Int. Conf. on Neural Networks, p.2281–2288. [doi:10.1109/IJCNN.2011.6033513]

    Google Scholar 

  • Ebel, H., Davidsen, J., Bornholdt, S., 2002. Dynamics of social networks. Complexity, 8(2):24–27. [doi:10.1002/cplx.10066]

    Article  MathSciNet  Google Scholar 

  • Freeman, L.C., 1978. Centrality in social networks conceptual clarification. Soc. Netw., 1(3):215–239. [doi:10.1016/0378–8733(78)90021–7]

    Article  MathSciNet  Google Scholar 

  • Freeman, L.C., 2004. The Development of Social Network Analysis: a Study in the Sociology of Science. Empirical Press, Vancouver.

    Google Scholar 

  • Hasan, M.A., Chaoji, V., Salem, S., et al., 2006. Link prediction using supervised learning. Proc. SDM Workshop on Link Analysis, Counter-Terrorism and Security, p.1–10.

    Google Scholar 

  • He, Y.L., Liu, J.N.K., Hu, Y.X., et al., 2015. OWA operator based link prediction ensemble for social network. Expert Syst. Appl., 42(1):21–50. [doi:10.1016/j.eswa.2014.07.018]

    Article  Google Scholar 

  • Huang, Z., Lin, D.K.J., 2009. The time-series link prediction problem with applications in communication surveillance. INFORMS J. Comput., 21(2):286–303. [doi:10.1287/ijoc.1080.0292]

    Article  Google Scholar 

  • Jaccard, P., 1901. Étude comparative de la distribution florale dans une portion des alpes et des jura. Bull. Soc. Vaud. Sci. Nat., 37:547–579 (in French).

    Google Scholar 

  • Jin, E.M., Girvan, M., Newman, M.E.J., 2001. The structure of growing social networks. Available from http://ideas.repec.org/p/wop/safiwp/01–06-032.html [Accessed on June 30, 2015].

    Google Scholar 

  • Khorasani, E.S., Rahimi, S., Patel, P., et al., 2011. CWJess: an expert system shell for computing with words. Proc. IEEE Int. Conf. on Information Reuse and Integration, p.396–399. [doi:10.1109/IRI.2011.6009580]

    Google Scholar 

  • Nair, P.S., Sarasamma, S.T., 2007. Data mining through fuzzy social network analysis. Proc. 26th Annual Meeting of the North American Fuzzy Information Processing Society, p.251–255. [doi:10.1109/NAFIPS.2007.383846]

    Google Scholar 

  • Ryoke, M., Nakamori, Y., Suzuki, K., 1995. Adaptive fuzzy clustering and fuzzy prediction models. Proc. Int. Joint Conf. of 4th IEEE Int. Conf. on Fuzzy Systems and 2nd Int. Fuzzy Engineering Symp., p.2215–2220. [doi:10.1109/FUZZY.1995.409987]

    Google Scholar 

  • Yan, B., Gregory, S., 2011. Finding missing edges and communities in incomplete networks. J. Phys. A, 44:495102.1–495102.15.

    Google Scholar 

  • Zadeh, L.A., 1965. Fuzzy sets. Inform. Contr., 8(3):338–353.

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang, J.Y., Borland, R., Coghill, K., 2011. Evaluating the effect of health warnings in influencing Australian smokers’ psychosocial and quitting behaviours using fuzzy causal network. Expert Syst. Appl., 38(6):6430–6438. [doi:10.1016/j.eswa.2010.11.042]

    Article  Google Scholar 

  • Zhu, J., Xie, Q., Chin, E.J., 2012. A hybrid time-series link prediction framework for large social network. Proc. 23rd Int. Conf. on Database and Expert Systems Applications, p.345–359. [doi:10.1007/978–3-642–32597–7_30]

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun-fang Chen.

Additional information

Project supported by the National Natural Science Foundation of China (Nos. 61272422 and 61202353)

ORCID: Yun-fang CHEN, http://orcid.org/0000-0002-7897-3588

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Lm., Zhang, W. & Chen, Yf. Time-series prediction based on global fuzzy measure in social networks. Frontiers Inf Technol Electronic Eng 16, 805–816 (2015). https://doi.org/10.1631/FITEE.1500025

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/FITEE.1500025

Keywords

Document code

CLC number

Navigation