Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Design of an enhanced visual odometry by building and matching compressive panoramic landmarks online

  • Published:
Frontiers of Information Technology & Electronic Engineering Aims and scope Submit manuscript

Abstract

Efficient and precise localization is a prerequisite for the intelligent navigation of mobile robots. Traditional visual localization systems, such as visual odometry (VO) and simultaneous localization and mapping (SLAM), suffer from two shortcomings: a drift problem caused by accumulated localization error, and erroneous motion estimation due to illumination variation and moving objects. In this paper, we propose an enhanced VO by introducing a panoramic camera into the traditional stereo-only VO system. Benefiting from the 360° field of view, the panoramic camera is responsible for three tasks: (1) detecting road junctions and building a landmark library online; (2) correcting the robot’s position when the landmarks are revisited with any orientation; (3) working as a panoramic compass when the stereo VO cannot provide reliable positioning results. To use the large-sized panoramic images efficiently, the concept of compressed sensing is introduced into the solution and an adaptive compressive feature is presented. Combined with our previous two-stage local binocular bundle adjustment (TLBBA) stereo VO, the new system can obtain reliable positioning results in quasi-real time. Experimental results of challenging long-range tests show that our enhanced VO is much more accurate and robust than the traditional VO, thanks to the compressive panoramic landmarks built online.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bay, H., Tuytelaars, T., van Gool, L., 2006. SURF: speeded up robust features. Proc. 9th European Conf. on Computer Vision, p.404–417. [doi:10.1007/11744023_32]

    Google Scholar 

  • Cai, X., Zhang, Z., Zhang, H., et al., 2014. Soft consistency reconstruction: a robust 1-bit compressive sensing algorithm. arXiv:1402.5475 (preprint).

    Google Scholar 

  • Candes, E.J., Tao, T., 2005. Decoding by linear programming. IEEE Trans. Inform. Theory, 51(12):4203–4215. [doi:10.1109/TIT.2005.858979]

    Article  MATH  MathSciNet  Google Scholar 

  • Donoho, D.L., 2006. Compressed sensing. IEEE Trans. Inform. Theory, 52(4):1289–1306. [doi:10.1109/TIT.2006.871582]

    Article  MATH  MathSciNet  Google Scholar 

  • Durrant-Whyte, H., Bailey, T., 2006. Simultaneous localization and mapping: part I. IEEE Robot. Autom. Mag., 13(2):99–110. [doi:10.1109/MRA.2006.1638022]

    Article  Google Scholar 

  • Fischler, M.A., Bolles, R.C., 1981. Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM, 24(6):381–395. [doi:10.1145/358669.358692]

    Article  MathSciNet  Google Scholar 

  • Fraundorfer, F., Scaramuzza, D., 2012. Visual odometry: part II. Matching, robustness, optimization, and applications. IEEE Robot. Autom. Mag., 19(2):78–90. [doi:10.1109/MRA.2012.2182810]

    Article  Google Scholar 

  • Galvez-López, D., Tardos, J.D., 2012. Bags of binary words for fast place recognition in image sequences. IEEE Trans. Robot., 28(5):1188–1197. [doi:10.1109/TRO.2012.2197158]

    Article  Google Scholar 

  • Geiger, A., Lenz, P., Urtasun, R., 2012. Are we ready for autonomous driving? The KITTI vision benchmark suite. Proc. IEEE Conf. on Computer Vision and Pattern Recognition, p.3354–3361. [doi:10.1109/CVPR.2012.6248074]

    Google Scholar 

  • Horn, B.K.P., 1987. Closed-form solution of absolute orientation using unit quaternions. JOSA A, 4(4):629–642. [doi:10.1364/JOSAA.4.000629]

    Article  MathSciNet  Google Scholar 

  • Konolige, K., Agrawal, M., Solà, J., 2011. Large-scale visual odometry for rough terrain. Proc. 13th Int. Symp. on Robotics Research, p.201–212. [doi:10.1007/978-3-642-14743-2_18]

    Google Scholar 

  • Liu, Y., Zhang, H., 2012. Visual loop closure detection with a compact image descriptor. Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, p.1051–1056. [doi:10.1109/IROS.2012.6386145]

    Google Scholar 

  • Lu, W., Xiang, Z., Liu, J., 2013. High-performance visual odometry with two-stage local binocular BA and GPU. Proc. IEEE Intelligent Vehicles Symp., p.1107–1112. [doi:10.1109/IVS.2013.6629614]

    Google Scholar 

  • Munguia, R., Grau, A., 2007. Monocular SLAM for visual odometry. Proc. IEEE Int. Symp. on Intelligent Signal Processing, p.1–6. [doi:10.1109/WISP.2007.4447564]

    Google Scholar 

  • Nistér, D., Naroditsky, O., Bergen, J., 2004. Visual odometry. Proc. IEEE Computer Society Conf. on Computer Vision and Pattern Recognition, p.652–659. [doi:10.1109/CVPR.2004.1315094]

    Google Scholar 

  • Scaramuzza, D., Fraundorfer, F., 2011. Visual odometry (tutorial). IEEE Robot. Autom. Mag., 18(4):80–92. [doi:10.1109/MRA.2011.943233]

    Article  Google Scholar 

  • Se, S., Lowe, D., Little, J., 2002. Global localization using distinctive visual features. Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, p.226–231. [doi:10.1109/IRDS.2002.1041393]

    Google Scholar 

  • Singh, G., Košechá, J., 2010. Visual loop closing using gist descriptors in Manhattan world. ICRA Omnidirectional Vision Workshop.

    Google Scholar 

  • Sivic, J., Zisserman, A., 2003. Video Google: a text retrieval approach to object matching in videos. Proc. 9th IEEE Int. Conf. on Computer Vision, p.1470–1477. [doi:10.1109/ICCV.2003.1238663]

    Chapter  Google Scholar 

  • Stewénius, H., Engels, C., Nistér, D., 2006. Recent developments on direct relative orientation. ISPRS J. Photogr. Remote Sens., 60(4):284–294. [doi:10.1016/j.isprsjprs.2006.03.005]

    Article  Google Scholar 

  • Sünderhauf, N., Protzel, P., 2011. BRIEF-Gist—closing the loop by simple means. Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, p.1234–1241. [doi:10.1109/IROS.2011.6094921]

    Google Scholar 

  • Wang, Y., 2013. Navigational Road Modeling Based on Omnidirectional Multi-camera System. PhD Thesis, Zhejiang University, Hangzhou, China (in Chinese).

    Google Scholar 

  • Wright, J., Yang, A.Y., Ganesh, A., et al., 2009. Robust face recognition via sparse representation. IEEE Trans. Patt. Anal. Mach. Intell., 31(2):210–227. [doi:10.1109/TPAMI.2008.79]

    Article  Google Scholar 

  • Wu, C., 2007. SiftGPU: a GPU Implementation of Scale Invariant Feature Transform (SIFT). Available from http://cs.unc.edu/~ccwu/siftgpu/

    Google Scholar 

  • Zhang, K., Zhang, L., Yang, M.H., 2012. Real-time compressive tracking. Proc. 12th European Conf. on Computer Vision, p.864–877. [doi:10.1007/978-3-642-33712-3_62]

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-yu Xiang.

Additional information

Project supported by the National Natural Science Foundation of China (Nos. 61071219 and 90820306) and the Fundamental Research Funds for the Central Universities, China

ORCID: Wei LU, http://orcid.org/0000-0002-7456-1834; Zhi-yu XIANG, http://orcid.org/0000-0002-3329-7037

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, W., Xiang, Zy. & Liu, Jl. Design of an enhanced visual odometry by building and matching compressive panoramic landmarks online. Frontiers Inf Technol Electronic Eng 16, 152–165 (2015). https://doi.org/10.1631/FITEE.1400139

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/FITEE.1400139

Key words

CLC number

Navigation