2018 Volume E101.D Issue 1 Pages 244-248
This paper addresses recommendation diversification. Existing diversification methods have difficulty in dealing with the tradeoff between accuracy and diversity. We point out the root of the problem in diversification methods and propose a novel method that can avoid the problem. Our method aims to find an optimal solution of the objective function that is carefully designed to consider user preference and the diversity among recommended items simultaneously. In addition, we propose an item clustering and a greedy approximation to achieve efficiency in recommendation.