Abstract
Phase-field (PF) simulations have emerged as a powerful tool for understanding recrystallization phenomena. While numerous factors could simultaneously influence the recrystallization processes of deformed microstructures in experiments, PF simulations allow one to isolate the contribution of each factor and mesoscale mechanism to the overall recrystallization microstructure development and thus determine their relative importance. Furthermore, there are always irregularities in the deformation microstructures, complicating the analysis of experimental results. This article highlights the new understandings of boundary migration during static recrystallization achieved through a close integration of experiments and PF simulations. Finally, we briefly discuss the potential application of PF simulations to probe the dynamics of recrystallization.
Graphical abstract
Similar content being viewed by others
References
F.J. Humphreys, M. Hatherly, Recrystallization and Related Annealing Phenomena, 2nd edn. (Elsevier, Amsterdam, 2004)
R.D. Doherty, D.A. Hughes, F.J. Humphreys, J.J. Jonas, D. Juul Jensen, M.E. Kassner, W.E. King, T.R. McNelley, H.J. McQueen, A.D. Rollett, Mater. Sci. Eng. A 238, 219 (1997)
D. Juul Jensen, Y. Zhang, Curr. Opin. Solid State Mater. Sci. 24, 100821 (2020)
J.W. Martin, R.D. Doherty, B. Cantor, Stability of Microstructure in Metallic Systems (Cambridge University Press, Cambridge, 1997)
Y. Huang, F.J. Humphreys, Acta Mater. 47(7), 2259 (1999)
M. Martorano, M. Fortes, A. Padilha, Acta Mater. 54, 2769 (2006)
M.A. Martorano, H.R.Z. Sandim, M.A. Fortes, A.F. Padilha, Scr. Mater. 56, 903 (2007)
Y. Zhang, A. Godfrey, D. Juul Jensen, Comput. Mater. Contin. 14, 197 (2009)
Y. Zhang, A. Godfrey, D. Juul Jensen, Scr. Mater. 64, 331 (2011)
C. Zhang, V. Yadav, N. Moelans, D. Juul Jensen, T. Yu, Scr. Mater. 214, 114675 (2022)
N. Moelans, A. Godfrey, Y. Zhang, D. Juul Jensen, Phys. Rev. B 88, 054103 (2013)
J.A. Wert, Q. Liu, N. Hansen, Acta Metall. Mater. 43, 4153 (1995)
N. Hansen, X. Huang, D.A. Hughes, Mater. Sci. Eng. A 317, 3 (2001)
H.S. Chen, A. Godfrey, N. Hansen, J.X. Xie, Q. Liu, Mater. Sci. Eng. A 483–484, 157 (2008)
Q. Xing, X. Huang, N. Hansen, Metall. Mater. Trans. A 37, 1311 (2006)
N. Hansen, Metall. Mater. Trans. A 32, 2917 (2001)
Q. Liu, D. Juul Jensen, N. Hansen, Acta Mater. 46, 5819 (1998)
D.A. Hughes, N. Hansen, Metall. Trans. A 24, 2022 (1993)
P. Cizek, J.A. Whiteman, W.M. Rainforth, J.H. Beynon, J. Microsc. 213, 285 (2004)
D. Kuhlmann-Wilsdorf, N. Hansen, Scr. Metall. Mater. 25, 1557 (1991)
B. Bay, N. Hansen, D.A. Hughes, D. Kuhlmann-Wilsdorf, Acta Metall. Mater. 40, 205 (1992)
F.J. Humphreys, Acta Metall. 25, 1323 (1977)
W. Xu, M. Ferry, J.M. Cairney, F.J. Humphreys, Acta Mater. 55, 5157 (2007)
M.J. Jones, F.J. Humphreys, Acta Mater. 51, 2149 (2003)
I. Steinbach, Model. Simul. Mater. Sci. Eng. 17, 073001 (2009)
L.-Q. Chen, Annu. Rev. Mater. Res. 32, 113 (2002)
B. Zhu, M. Militzer, Model. Simul. Mater. Sci. Eng. 20, 085011 (2012)
M. Muramatsu, Y. Aoyagi, Y. Tadano, K. Shizawa, Comput. Mater. Sci. 87, 112 (2014)
M. Wang, B.Y. Zong, G. Wang, Comput. Mater. Sci. 45, 217 (2009)
S.P. Gentry, K. Thornton, Model. Simul. Mater. Sci. Eng. 28, 065002 (2020)
N. Xiao, P. Hodgson, B. Rolfe, D. Li, Comput. Mater. Sci. 155, 298 (2018)
Y. Li, S. Hu, E. Barker, N. Overman, S. Whalen, S. Mathaudhu, Comput. Mater. Sci. 180, 109707 (2020)
Y. Cai, C. Sun, Y. Li, S. Hu, N. Zhu, E. Barker, L. Qian, Int. J. Plast. 133, 102773 (2020)
P. Bernard, S. Bag, K. Huang, R.E. Logé, Mater. Sci. Eng. A 528, 7357 (2011)
N. Moelans, B. Blanpain, P. Wollants, Phys. Rev. Lett. 101, 025502 (2008)
N. Moelans, B. Blanpain, P. Wollants, Phys. Rev. B 78, 024113 (2008)
L.-Q. Chen, W. Yang, Phys. Rev. B 50, 15752 (1994)
N. Moelans, Y. Zhang, A. Godfrey, D. Juul Jensen, IOP Conf. Ser. Mater. Sci. Eng. 89, 012037 (2015)
V. Yadav, N. Moelans, Y. Zhang, D. Juul Jensen, Acta Mater. 221, 117377 (2021)
V. Yadav, N. Moelans, Y. Zhang, D. Juul Jensen, Scr. Mater. 191, 116 (2021)
A. Hamed, S. Rayaprolu, G. Winther, A. El-Azab, Acta Mater. 240, 118332 (2022)
D.A. Hughes, N. Hansen, Acta Mater. 48, 2985 (2000)
R. Li, V. Yadav, N. Moelans, Y. Zhang, D. Juul Jensen, IOP Conf. Ser. Mater. Sci. Eng. 1121, 012013 (2021)
C.S. Smith, Trans. Metall. Soc. AIME 175, 15 (1948)
N. Moelans, B. Blanpain, P. Wollants, Acta Mater. 53, 1771 (2005)
N. Moelans, B. Blanpain, P. Wollants, Acta Mater. 54, 1175 (2006)
N. Zhu, C. Sun, Y. Li, L. Qian, S. Hu, Y. Cai, Y. Feng, Comput. Mater. Sci. 200, 110858 (2021)
N. Zhu, C. Sun, Y. Feng, X. Li, Mater. Sci. Technol. 39, 463 (2023)
P.W. Liu, Z. Wang, Y.H. Xiao, R.A. Lebensohn, Y.C. Liu, M.F. Horstemeyer, X.Y. Cui, L. Chen, Int. J. Plast. 128, 102670 (2020)
T. Takaki, A. Yamanaka, Y. Higa, Y. Tomita, Comput. Aided Des. 14, 75 (2007)
T. Takaki, Y. Tomita, Int. J. Mech. Sci. 52, 320 (2010)
D.L. Olmsted, E.A. Holm, S.M. Foiles, Acta Mater. 57, 3704 (2009)
H.F. Poulsen, Three-Dimensional X-Ray Diffraction Microscopy: Mapping Polycrystals and Their Dynamics (Springer, Cham, 2004)
W. Ludwig, S. Schmidt, E.M. Lauridsen, H.F. Poulsen, J. Appl. Crystallogr. 41, 302 (2008)
G. Johnson, A. King, M.G. Honnicke, J. Marrow, W. Ludwig, J. Appl. Crystallogr. 41, 310 (2008)
Y.B. Zhang, D.J. Jensen, IOP Conf. Ser. Mater. Sci. Eng. 89, 012015 (2015)
S. Schmidt, S. Nielsen, C. Gundlach, L. Margulies, X. Huang, D. Juul Jensen, Science 305, 229 (2004)
S.A. McDonald, C. Holzner, E.M. Lauridsen, P. Reischig, A.P. Merkle, P.J. Withers, Sci. Rep. 7, 5251 (2017)
J. Sun, A. Lyckegaard, Y.B. Zhang, S.A. Catherine, B.R. Patterson, F. Bachmann, N. Gueninchault, H. Bale, C. Holzner, E. Lauridsen, D.J. Jensen, IOP Conf. Ser. Mater. Sci. Eng. 219, 012039 (2017)
N. Lu, J. Kang, N. Senabulya, R. Keinan, N. Gueninchault, A.J. Shahani, Acta Mater. 195, 1 (2020)
J. Zhang, S.O. Poulsen, J.W. Gibbs, P.W. Voorhees, H.F. Poulsen, Acta Mater. 129, 229 (2017)
J. Zhang, W. Ludwig, Y. Zhang, H.H.B. Sørensen, D.J. Rowenhorst, A. Yamanaka, P.W. Voorhees, H.F. Poulsen, Acta Mater. 191, 211 (2020)
Funding
R.G.L. thanks the European Research Council (ERC) under the European Union’s Horizon 2020 Research and Innovation Programme (M4D-Grant Agreement No. 788567). Y.B.Z. and D.J.J. acknowledge the financial support by the research Grant No. (MicroAM-VIL54495) from VILLUM FONDEN.
Author information
Authors and Affiliations
Contributions
All authors contributed equally to the writing of this article.
Corresponding authors
Ethics declarations
Conflict of interest
On behalf of all authors, the corresponding author states that there is no conflict of interest.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Li, R., Zhang, Y., Moelans, N. et al. New understanding of static recrystallization from phase-field simulations. MRS Bulletin 49, 594–602 (2024). https://doi.org/10.1557/s43577-024-00716-7
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1557/s43577-024-00716-7