Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

Comparison of carbon sequestration efficacy between artificial photosynthetic carbon dioxide conversion and timberland reforestation

  • Original Research
  • Published:
MRS Energy & Sustainability Aims and scope Submit manuscript

Abstract

A comparison between electrochemical carbon dioxide conversion and reforestation is presented. By comparing thermodynamic and forestry data, recommendations for technology development can be made.

With the global average temperature steadily increasing due to anthropogenic emission of greenhouse gases into the atmosphere, there has been increasing interest worldwide in new technologies for carbon capture, utilization, and storage (CCUS). This coincides with the decrease in cost of deployment of intermittent renewable electricity sources, specifically solar energy, necessitating development of new methods for energy storage. Carbon dioxide conversion technologies driven by photovoltaics aim to address both these needs. To adequately contribute to greenhouse gas reduction, the carbon dioxide conversion technology deployed should have a substantially higher rate of carbon dioxide removal than planting an equivalent-sized forest. Using consistent methodologies, we analyze the effectiveness of model photovoltaic-driven carbon dioxide conversion technologies that produce liquid alcohols as compared to planting an equivalent forest. This analysis serves to establish an energy use boundary for carbon dioxide conversion technology, in order to be a viable alternative as a net carbon negative technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Table 1
Figure 2
Table 2
Figure 3
Table 3
Table 4
Figure 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Bui M., Adjiman C.S., Bardow A., Anthony E.J., Boston A., Brown S., Fennell P.S., Fuss S., Galindao A., Hackett L.A., Hallett J.P., Herzog H.J., Jackson G., Kemper J., Krevor S., Maitland G.C., Matuszewski M., Metcalfe I.S., Petit C., Puxty G., Reimer J., Reiner D.M., Rubin E.S., Scott S.A., Shah N., Smit B., Trusler J.P.M., Webley P., Wilcox J., and Mac Dowell N.: Carbon capture and storage (CCS): The way forward. Energy Environ. Sci. 11, 1062–1176 (2018).

    Article  CAS  Google Scholar 

  2. Katelhon A., Meys R., Deutz S., Suh S., and Bardow A.: Climate change mitigation potential of carbon capture and utilization in the chemical industry. Proc. Natl. Acad. Sci. USA 116, 11187–11194 (2019).

  3. International Energy Administration: Global CO2 emissions in 2019 (IEA, 2020), Paris. Available at: https://www.iea.org/articles/global-co2-emissions-in-2019 (accessed August 6, 2020).

    Google Scholar 

  4. Centi G. and Perathoner S.: Opportunities and prospects in the chemical recycling of carbon dioxide to fuels. Catal. Today 148, 191–205 (2009).

    Article  CAS  Google Scholar 

  5. Sheehan S.W., Cave E.R., Kuhl K.P., Flanders N., Smeigh A.L., and Co D.T.: Commercializing solar fuels within today's markets. Chem 3, 3–7 (2017).

    Article  CAS  Google Scholar 

  6. Herbert G.M.J., Iniyan S., Sreevalsan E., and Rajapandian S.: A review of wind energy technologies. Renew. Sustain. Energy Rev. 11, 1117–1145 (2007).

    Article  Google Scholar 

  7. Des Marais D.J.: When did photosynthesis emerge on earth? Science 289, 1703–1705 (2000).

    Google Scholar 

  8. Blankenship R.E., Blankenship R.E., Tiede D.M., Barber J., Brudvig G.W., Fleming G., Ghirardi M., Gunner M.R., Junge W., Kramer D.M., Melis A., and Moore T.A.: Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement. Science 332, 805–809 (2011).

    Article  CAS  Google Scholar 

  9. Green M.A., Dunlow E.D., Hohl-Ebinger J., Yoshita M., Kopidakis N., and Ho-Baillie A.W.Y.: Solar cell efficiency tables (Version 55). Prog. Photovolt. Res. Appl. 28, 3–15 (2020).

    Article  Google Scholar 

  10. Hennessey S. and Farràs F.: Production of solar chemicals: Gaining selectivity with hybrid molecule/semiconductor assemblies. Chem. Commun. 54, 6662–6680 (2018).

    Article  CAS  Google Scholar 

  11. Yan Z., Hitt J.L., Turner J.A., and Mallouk T.E.: Renewable electricity storage using electrolysis. Proc. Natl. Acad. Sci. USA 117, 12558–12563 (2020).

  12. Walter M.G., Warren E.L., McKone J.R., Boettcher S.W., Mi O., Santori E.A., and Lewis N.S.: Solar water splitting cells. Chem. Rev. 110, 6446–6473 (2010).

    Article  CAS  Google Scholar 

  13. Dogutan D.K. and Nocera D.G.: Artificial photosynthesis at efficiencies greatly exceeding that of natural photosynthesis. Acc. Chem. Res. 52, 3143–3148 (2019).

    Article  CAS  Google Scholar 

  14. Ulmer U., Dingle T., Duchesne P.N., Morris R.H., Tavasoli A., Wood T., and Ozin G.A.: Fundamentals and applications of photocatalytic CO2 methanation. Nat. Commun. 10, 1–12 (2019).

    Article  CAS  Google Scholar 

  15. Fountaine K.T., Lewerenz H.J., and Atwater H.A.: Efficiency limits for photoelectrochemical water-splitting. Nat. Commun. 7, 1–9 (2016).

    Article  Google Scholar 

  16. Ardo S., Fernandez Rivas D., Modestino M.A., Greiving V.S., Abdi F.F., Llado E.A., Artero V., Ayers K., Battaglia C., Becker J.P., Bederak D., Berger A., Buda F., Chinello E., Dam B., Di Palma V., Edvinsson T., Fujii K., Gardeniers H., Geerlings H., Hashemi S.M.H., Haussener S., Houle F., Huskens J., James B.D., Konrad K., Kudo A., Kunturu P.P., Lohse D., Mei B., Miller E.L., Moore G.F., Muller J., Orchard K.L., Rosser T.E., Saadi F.H., Schuttauf J.-W., Seger B., Sheehan S.W., Smith W.A., Spurgeon J., Tang M.H., van de Krol R., Vesborg P.C.K., and Westerik P.: Pathways to electrochemical solar-hydrogen technologies. Energy Environ. Sci. 11, 2768–2783 (2018).

    Article  CAS  Google Scholar 

  17. Dotan H., Landman A., Sheehan S.W., Malviya K.D., Shter G.E., Grave D.A., Arzi Z., Yehudai N., Halabi M., Gal N., and Hadari N.: Decoupled hydrogen and oxygen evolution by a two-step electrochemical–chemical cycle for efficient overall water splitting. Nat. Energy 4, 786–795 (2019).

    Article  CAS  Google Scholar 

  18. Smith W.A., Burdyny T., Vermaas D.A., and Geerlings H.: Pathways to industrial-scale fuel out of thin air from CO2 electrolysis. Joule 3, 1822–1834 (2019).

    Article  CAS  Google Scholar 

  19. Chen C., Khosrowabadi Kotyk J.F., and Sheehan S.W.: Progress toward commercial application of electrochemical carbon dioxide reduction. Chem 4, 2571–2586 (2018).

    Article  CAS  Google Scholar 

  20. Bertau M., Bertau M., Offermanns H., Plass L., Schmidt F., and Wernicke H.J.: Methanol: The Basic Chemical and Energy Feedstock of the Future (Springer, 2014), Heidelberg; p. 677.

    Book  Google Scholar 

  21. Marlin D.S., Sarron E., and Sigurbjörnsson O.: Process advantages of direct CO2 to methanol synthesis. Front. Chem. 6, 446 (2018).

    Article  CAS  Google Scholar 

  22. Ozin G.: Sunshine not moonshine–Happy hour with carbon dioxide. Adv. Sci. News (2019). Available at: https://www.advancedsciencenews.com/sunshine-not-moonshine-happy-hour-with-carbon-dioxide/ (accessed August 8, 2020).

    Google Scholar 

  23. Hori Y., Murata A., and Takahashi R.: Formation of hydrocarbons in the electrochemical reduction of carbon dioxide at a copper electrode in aqueous solution. J. Chem. Soc., Faraday Trans. 1, 2309–2326 (1989).

    Article  Google Scholar 

  24. Li Y.C., Wang Z., Yuan T., Nam D.H., Luo M., Wicks J., Chen B., Li J., Li F., de Arquer F.P.G., and Wang Y.: Binding site diversity promotes CO2 electroreduction to ethanol. J. Am. Chem. Soc. 141, 8584–8591 (2019).

    Article  CAS  Google Scholar 

  25. Wu Y., Jiang Z., Lu X., Liang Y., and Wang H.: Domino electroreduction of CO2 to methanol on a molecular catalyst. Nature 575, 639–642 (2019).

    Article  CAS  Google Scholar 

  26. Li C.W., Ciston J., and Kanan M.W.: Electroreduction of carbon monoxide to liquid fuel on oxide-derived nanocrystalline copper. Nature 508, 504–507 (2014).

    Article  CAS  Google Scholar 

  27. Haas T., Krause R., Weber R., Demler M., and Schmid G.: Technical photosynthesis involving CO2 electrolysis and fermentation. Nat. Catal. 1, 32–39 (2018).

    Article  CAS  Google Scholar 

  28. Oswalt S.N., Smith W.B., Miles P.D., and Pugh S.A.: Forest resources of the United States, 2017: A technical document supporting the Forest Service 2020 RPA Assessment. Gen. Tech. Rep. WO-97. Washington, DC US Department of Agriculture, Forest Service, Washington Office, 97 (2019).

  29. Ayers K.E., Anderson E.B., Capuano C., Carter B., Dalton L., Hanlon G., Manco J., and Niedzwiecki M.: Research advances towards low cost, high efficiency PEM electrolysis. ECS Trans. 33, 3 (2010).

    Article  CAS  Google Scholar 

  30. Haynes W.M.: CRC Handbook of Chemistry and Physics (CRC Press, Boca Raton, FL, 2014).

    Book  Google Scholar 

  31. Rochelle G.T.: Amine scrubbing for CO2 capture. Science 325, 1652–1654 (2009).

    Article  CAS  Google Scholar 

  32. Nowak D.J. and Crane D.E.: Carbon storage and sequestration by urban trees in the USA. Environ. Pollut. 116, 381–389 (2002).

    Article  CAS  Google Scholar 

  33. Mathias J.D., Anderies J.M., and Janssen M.A.: On our rapidly shrinking capacity to comply with the planetary boundaries on climate change. Sci. Rep. 7, 42061 (2017).

    Article  CAS  Google Scholar 

  34. Thomas S.C. and Martin A.R.: Carbon content of tree tissues: A synthesis. Forests 3, 332–352 (2012).

    Article  Google Scholar 

  35. Crowther T.W., Glick H.B., Covey K.R., Bettigole C., Maynard D.S., Thomas S.M., Smith J.R., Hintler G., Duguid M.C., Amatulli G., and Tuanmu M.N.: Mapping tree density at a global scale. Nature 525, 201–205 (2015).

    Article  CAS  Google Scholar 

  36. Dobos A.P.: PVWatts Version 5 Manual. National Renewable Energy Lab, NREL, Golden, CO, USA, 2014.

    Book  Google Scholar 

  37. Saxe H.: LCA-based comparison of the climate footprint of beer vs. wine & spirits. Fødevareøkonomisk Institut, Københavns Universitet. Report No. 207 (2010).

    Google Scholar 

  38. Schlömer S., Bruckner T., Fulton L., Hertwich E., McKinnon A., Perczyk D., Roy J., Schaeffer R., Sims R., Smith P., and Wiser R.: Annex III: Technology-specific cost and performance parameters. In Climate Change 2014: Mitigation of ClimateChange. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on ClimateChange, O. Edenhofer, R. Pichs-Madruga, Y. Sokona, E. Farahani, S. Kadner, K. Seyboth, A. Adler, I. Baum, S. Brunner, P. Eickemeier, B. Kriemann, J. Savolainen, S. Schlömer, C. von Stechow, T. Zwickel and J.C. Minx, eds. (Cambridge University Press, Cambridge, UK and New York, NY, 2014).

    Google Scholar 

  39. Orella M.J., Brown S.M., Leonard M.E., Roman-Leshov Y., and Brushett F.R.: A general tecno-economic model for evaluating emerging electrolytic processes. Energy Technol. (2020). doi:10.1002/ente.201900994.

    Google Scholar 

  40. Jouny M., Luc W., and Jiao F.: General techno-economic analysis of CO2 electrolysis systems. Ind. Eng. Chem. Res. 57, 2165–2177 (2018).

    Article  CAS  Google Scholar 

  41. Moulton R.J., Richards K.R.: Costs of Sequestering Carbon Through Tree Planting and Forest Management in the United States, Vol. 58 (US Department of Agriculture, Forest Service, Washington, DC, 1990).

  42. Torres A.B., Marchant R., Lovett J.C., Smart J.C., and Tipper R.: Analysis of the carbon sequestration costs of afforestation and reforestation agroforestry practices and the use of cost curves to evaluate their potential for implementation of climate change mitigation. Ecol. Econ. 69, 469–477 (2010).

    Article  Google Scholar 

  43. Griscom B.W., Adams J., Ellis P.W., Houghton R.A., Lomax G., Miteva D.A., Schlesinger W.H., Shoch D., Siikamäki J.V., Smith P., and Woodbury P.: Natural climate solutions. Proc. Natl. Acad. Sci. USA 114, 11645–11650 (2017).

  44. Shaner M.R., Atwater H.A., Lewis N.S., and McFarland E.W.: A comparative technoeconomic analysis of renewable hydrogen production using solar energy. Energy Environ. Sci. 9, 2354–2371 (2016).

    Article  CAS  Google Scholar 

  45. IPCC: Climate Change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Metz B., Davidson O.R., Bosch P.R., Dave R., Meyer L.A., eds. (Cambridge University Press, Cambridge, UK and New York, NY, 2007), pp. 543.

Download references

Acknowledgments

The authors thank Prof. Matthew Hayek for insightful discussions, Vi Dang for assistance in the design of Figure 3, and the New York State Energy Research and Development Authority (NYSERDA) for their Clean Energy Internship Program (S.G.H.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stafford W. Sheehan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gonzalez Hernandez, S., Sheehan, S.W. Comparison of carbon sequestration efficacy between artificial photosynthetic carbon dioxide conversion and timberland reforestation. MRS Energy & Sustainability 7, 32 (2020). https://doi.org/10.1557/mre.2020.32

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/mre.2020.32

Key words

Navigation