Large Minded Reasoners for Soft and Hard Cluster Validation -- Some Directions
Mani A, Sushmita Mitra
DOI: http://dx.doi.org/10.15439/2023F7902
Citation: Position Papers of the 18th Conference on Computer Science and Intelligence Systems, M. Ganzha, L. Maciaszek, M. Paprzycki, D. Ślęzak (eds). ACSIS, Vol. 36, pages 1–8 (2023)
Abstract. In recent research, validation methods for soft and hard clustering through general granular rough clusters are proposed by the first author. Large-minded reasoners are introduced and studied in the context of new concepts of non-stochastic rough randomness in a separate paper by her. In this research, the methodologies are reviewed and new low-cost scalable methodologies and algorithms are invented for computing granular rough approximations of soft clusters for many classes of partially ordered datasets. Specifically, these are applicable to datasets in which attribute values are numeric, vector valued, lattice-ordered or partially ordered. Additionally, new research directions are indicated.
References
- C. Hennig, M. Meila, F. Murtagh, and R. Rocci, Handbook of Cluster Analysis, 1st ed. Edited Volume. Chapman and Hall: CRC Press, 2016.
- M. Kim and R. S. Ramakrishna, “New Indices For Cluster Validity Assessment Pattern,” Pattern Recognition Letters, vol. 26, pp. 2353–2363, 2005. http://dx.doi.org/10.1016/j.patrec.2005.04.007
- C. Hennig and T. F. Liao, “Comparing Latent Class and Dissimilarity Based Clustering for Mixed Type Variables...” Journal of the Royal Statistical Society, pp. 309–369, 2013. http://dx.doi.org/10.1111/j.1467-9876.2012.01066.x
- C. Bouveyron, G. Celeux, B. Murphy, and A. Raftery, Model-Based Clustering and Classification for Data Science: With Applications in R. Cambridge University Press, 2019.
- A. Mani, “Dialectics of Counting and The Mathematics of Vagueness,” Transactions on Rough Sets, vol. XV, no. LNCS 7255, pp. 122–180, 2012. http://dx.doi.org/10.1007/978-3-642-31903-7 4
- ——, “Comparative Approaches to Granularity in General Rough Sets,” in IJCRS 2020, ser. LNAI, R. Bello et al., Eds. Springer, 2020, vol. 12179, pp. 500–518.
- ——, “General Rough Modeling of Cluster Analysis,” in Rough Sets: IJCRS-EUSFLAT 2021, ser. LNAI 12872, S. Ramanna et al., Eds. Springer Nature, 2021.
- A. Campagner and D. Ciucci, “A formal learning theory for three-way clustering,” in SUM 2020, J. Davis and K. Tabia, Eds. Springer, 2020, vol. LNAI 12322, pp. 128–140.
- A. Mani, “Algebraic Methods for Granular Rough Sets,” in Algebraic Methods in General Rough Sets, ser. Trends in Mathematics, A. Mani, I. Düntsch, and G. Cattaneo, Eds. Birkhauser Basel, 2018, pp. 157–336.
- ——, “Algebraic Semantics of Similarity-Based Bitten Rough Set Theory,” Fundamenta Informaticae, vol. 97, no. 1-2, pp. 177–197, 2009. http://dx.doi.org/10.3233/FI-2009-196
- P. Wasilewski and D. Ślȩzak, “Foundations of Rough Sets from Vagueness Perspective,” in Rough Computing: Theories, Technologies and Applications, A. Hassanien et al., Eds. IGI, Global, 2008, pp. 1–37.
- I. Chajda, Algebraic Theory of Tolerance Relations. Olomouc University Press, 1991. [Online]. Available: https://www.researchgate.net/publication/36797871
- A. Mani, “Representation, Duality and Beyond,” in Algebraic Methods in General Rough Sets, ser. Trends in Mathematics, A. Mani, I. Düntsch, and G. Cattaneo, Eds. Birkhauser Basel, 2018, pp. 459–552.
- H. J. Bandelt, “Tolerance relations of a lattice,” Bulletin Austral.Math. Soc., vol. 23, pp. 367–381, 1981. http://dx.doi.org/10.1017/S0004972700007255
- G. Czedli and L. Klukovits, “A note on tolerances of idempotent algebras,” Glasnik Matematicki (Zagreb), vol. 18, pp. 35–38, 1983. [Online]. Available: https://web.math.pmf.unizg.hr/glasnik/18.1/18103.pdf
- A. Górnicka, J. Grygiel, and I. Tyrala, “On the lattice of tolerances for a finite chain,” Czestochowa Mathematics, vol. XXI, pp. 25–30, 2016. http://dx.doi.org/10.16926/m.2016.21.03
- J. Niederle, “A note on tolerance lattices of products of lattices,” Casop. Pest. Matem., vol. 107, pp. 114–115, 1982. http://dx.doi.org/10.21136/CPM.1982.118112
- S. Mitra, “An Evolutionary Rough Partitive Clustering,” Pattern Recognition Letters, vol. 25, no. 12, pp. 1439–1449, 2004. http://dx.doi.org/10.1016/j.patrec.2004.05.007
- G. Peters, “Rough Clustering Utilizing the Principle of Indifference,” Information Sciences, vol. 277, pp. 358–374, 2014. http://dx.doi.org/10.1016/j.ins.2014.02.073
- J. Vermunt and J. Magidson, “Latent Class Cluster Analysis,” in Applied Latent Class Analysis. Cambridge: Cambridge University Press, 2002, pp. 89–106.
- I. Düntsch and G. Gediga, “Rough Set Clustering,” in Handbook of Cluster Analysis, C. Hennig, M. Meila, and F. Murtagh, Eds. CRC Press, 2016, ch. 25, pp. 575–594.
- A. D. Concilio, C. Guadagni, J. Peters, and S. Ramanna, “Descriptive Proximities. Properties and Interplay Between Classical Proximities and Overlap,” Mathematics in Computer Science, vol. 12, no. 1, pp. 91–106, 2018. http://dx.doi.org/10.1007/s11786-017-0328-y
- A. N. Kolmogorov, “On the logical foundations of probability theory,” in Selected Works of A. N. Kolmogorov, A. N. Shiryayev, Ed. Kluwer Academic, Nauka, 1986, vol. 2, ch. 53, pp. 515–519.
- B. Liu, Uncertainty Theory, ser. Studies in Fuzziness and Soft Comput- ing. Springer, 2004, vol. 154.
- T. Steifer, “A note on learning theoretic characterizations of randomness and convergence,” Review of Symbolic Logic, vol. 15, no. 3, pp. 807–822, 2022. http://dx.doi.org/10.1017/S1755020321000125
- L. Beach and G. Braun, “Laboratory studies of subjective probability: a status report,” in Subjective Probability, G. Wright and P. Ayton, Eds. John Wiley, 1994, pp. 107–128.
- A. Mani, I. Düntsch, and G. Cattaneo, Eds., Algebraic Methods in General Rough Sets, ser. Trends in Mathematics. Birkhauser Basel, 2018. ISBN 978-3-030-01161-1
- P. Pagliani and M. Chakraborty, A Geometry of Approximation: Rough Set Theory: Logic, Algebra and Topology of Conceptual Patterns. Berlin: Springer, 2008.
- A. Mani, “Rough randomness and its application,” Journal of the Calcutta Mathematical Society, pp. 1–15, 2023. http://dx.doi.org/10.5281/zen-odo.7762335. [Online]. Available: https://zenodo.org/record/7762335
- J. Stepaniuk, Rough-Granular Computing in Knowledge Discovery and Data Mining, ser. Studies in Computational Intelligence,Volume 152. Springer-Verlag, 2009. ISBN 978-3-540-70800-1
- A. Gomolinska, “Rough Approximation Based on Weak q-RIFs,” Transactions on Rough Sets, vol. X, pp. 117–135, 2009. http://dx.doi.org/10.1007/978-3-642-03281-3_4
- M. Gagrat and S. Naimpally, “Proximity approach to semi-metric and developable spaces,” Pacific Journal of Mathematics, vol. 44, no. 1, pp. 93–105, 1973. http://dx.doi.org/10.2140/pjm.1973.44-1
- O. Cheong et al., Eds., Listing All Maximal Cliques in Sparse Graphs in Near-Optimal Time, ser. LNCS 6506. Berlin: Springer, 2010. doi: 10.1007/978-3-642-17517-6 36
- R. Freese, J. Jezek, J. Jipsen, P. Markovic, M. Maroti, and R. Mckenzie, “The Variety Generated by Order Algebras,” Algebra Universalis, vol. 47, pp. 103–138, 2002. http://dx.doi.org/10.1007/s00012-002-8178-z
- A. Mani, “Granularity and Rational Approximation: Rethinking Graded Rough Sets,” Transactions on Rough Sets, vol. XXIII, no. LNCS 13610, pp. 33–59, 2022. http://dx.doi.org/10.1007/978-3-662-66544-2 4
- M. Meila, “Spectral Clustering,” in Handbook of Cluster Analysis, C. Hennig, M. Meila, and F. Murtagh, Eds. CRC Press, 2016, ch. 7, pp. 125–144.
- S. Roy and P. Maji, “Tumor delineation from 3-d mr brain images,” Signal, Image and Video Processing, pp. 1–9, 2023. http://dx.doi.org/10.1007/s11760-023-02565-4
- P. Dutta and S. Mitra, “Composite deep network with feature weighting for improved delineation of covid infection in lung ct,” MedRxiv, pp. 1–22, 2023. http://dx.doi.org/10.1101/2023.01.17.23284673