Abstract
The disposal of nuclear waste poses a long-standing problem, which has been conventionally handled by human workers. This includes carrying heavy objects, exposure to radiation, and decontamination in full-body protective suits. To improve the working conditions and safety of the workers, robot systems can contribute to tackling some of these problems. So far, most robots in use are manually teleoperated and lack autonomy. To this end, we propose a fully autonomous decontamination setup with the humanoid robot ARMAR-6 [T. Asfour, M. Wächter, L. Kaul, et al., “ARMAR-6: a high-performance humanoid for human-robot collaboration in real world scenarios,” IEEE Robot. Autom. Mag., vol. 26, no. 4, pp. 108–121, 2019] that can manipulate unknown objects as a first important step of decontamination without the need for human intervention.
Zusammenfassung
Die Entsorgung nuklearer Abfälle stellt seit langem ein Problem dar, welches üblicherweise von menschlichen Arbeitskräften bewältigt wird. Unter anderem gehören das Tragen schwerer Gegenstände, die Strahlenbelastung und die Dekontamination in Ganzkörperschutzanzügen zu den problematischen Aspekten dieser Arbeit. Um die Arbeitsbedingungen und die Sicherheit der Arbeiter zu verbessern, können Robotersysteme dazu beitragen, einige dieser Probleme zu bewältigen. Bislang werden die meisten Roboter manuell ferngesteuert und können nicht autonom agieren. Daher schlagen wir einen vollständig autonomen Dekontaminationsaufbau mit dem humanoiden Roboter ARMAR-6 [T. Asfour, M. Wächter, L. Kaul, et al., “ARMAR-6: a high-performance humanoid for human-robot collaboration in real world scenarios,” IEEE Robot. Autom. Mag., vol. 26, no. 4, pp. 108–121, 2019] vor, der unbekannte Objekte als ersten wichtigen Schritt der Dekontamination ohne menschliches Eingreifen manipulieren kann.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: The research leading to these results has received funding from the German Federal Ministry of Education and Research (BMBF) under the competence center ROBDEKON (13N14678).
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
[1] N. Marturi, A. Rastegarpanah, C. Takahashi, et al.., “Towards advanced robotic manipulation for nuclear decommissioning: a pilot study on tele-operation and autonomy,” in International Conference on Robotics and Automation for Humanitarian Applications (RAHA), 2017, pp. 1–8.10.1109/RAHA.2016.7931866Search in Google Scholar
[2] T. Asfour, M. Wächter, L. Kaul, et al.., “ARMAR-6: a high-performance humanoid for human-robot collaboration in real world scenarios,” IEEE Robot. Autom. Mag., vol. 26, no. 4, pp. 108–121, 2019. https://doi.org/10.1109/mra.2019.2941246.Search in Google Scholar
[3] I. Tsitsimpelis, C. J. Taylor, B. Lennox, and M. J. Joyce, “A review of ground-based robotic systems for the characterization of nuclear environments,” Prog. Nucl. Energy, vol. 111, pp. 109–124, 2019. https://doi.org/10.1016/j.pnucene.2018.10.023.Search in Google Scholar
[4] R. Smith, E. Cucco, and C. Fairbairn, “Robotic Development for the Nuclear Environment: Challenges and Strategy,” Robotics, vol. 9, no. 4, p. 94, 2020. https://doi.org/10.3390/robotics9040094.Search in Google Scholar
[5] R. R. Murphy, S. Tadokoro, and A. Kleiner, “Disaster robotics,” in Springer Handbook of Robotics, Cham, Springer International Publishing, 2016, pp. 1577–1604.10.1007/978-3-319-32552-1_60Search in Google Scholar
[6] K. Nagatani, S. Kiribayashi, Y. Okada, et al.., “Emergency response to the nuclear accident at the Fukushima Daiichi nuclear power plants using mobile rescue robots,” J. Field Robot., vol. 30, no. 1, pp. 44–63, 2013. https://doi.org/10.1002/rob.21439.Search in Google Scholar
[7] D. W. Seward and M. J. Bakari, “The use of robotics and automation in nuclear decommissioning,” in International Symposium on Automation and Robotics in Construction, Ferrara, International Association for Automation and Robotics in Construction (IAARC), 2005.10.22260/ISARC2005/0003Search in Google Scholar
[8] I. Vitanov, I. Farkhatdinov, B. Denoun, et al.., “A suite of robotic solutions for nuclear waste decommissioning,” Robotics, vol. 10, no. 4, p. 112, 2021. https://doi.org/10.3390/robotics10040112.Search in Google Scholar
[9] P. Kaiser, D. Kanoulas, M. Grotz, et al.., “An affordance-based pilot interface for high-level control of humanoid robots in supervised autonomy,” in International Conference on Humanoid Robots, IEEE-RAS, 2016, pp. 621–628. Available at: KIT-H2T.10.1109/HUMANOIDS.2016.7803339Search in Google Scholar
[10] C. Pohl, K. Hitzler, R. Grimm, A. Zea, U. D. Hanebeck, and T. Asfour, “Affordance-based grasping and manipulation in real world applications,” in International Conference on Intelligent Robots and Systems, IEEE/RSJ, 2020, pp. 9569–9576. Available at: KIT-H2T.10.1109/IROS45743.2020.9341482Search in Google Scholar
[11] J. J. Gibson, “The theory of affordances,” in The Ecological Approach to Visual Perception, Boston, Houghton Mifflin, 1979, pp. 119–137. chapter 8.Search in Google Scholar
[12] R. Grimm, M. Grotz, S. Ottenhaus, and T. Asfour, “Vision-based robotic pushing and grasping for stone sample collection under computing resource constraints,” in International Conference on Robotics and Automation, IEEE, 2021, pp. 6498–6504. Available at: KIT-H2T.10.1109/ICRA48506.2021.9560889Search in Google Scholar
[13] C. Pohl and T. Asfour, “Probabilistic spatio-temporal fusion of affordances for grasping and manipulation,” IEEE Rob. Autom. Lett. (RA-L), vol. 7, no. 2, pp. 3226–3233, 2022. https://doi.org/10.1109/lra.2022.3144794.Search in Google Scholar
[14] N. Vahrenkamp, T. Asfour, and R. Dillmann, “Robot placement based on reachability inversion,” in International Conference on Robotics and Automation, IEEE, 2013, pp. 1970–1975. Available at: KIT-H2T.10.1109/ICRA.2013.6630839Search in Google Scholar
[15] Y. Zhou, J. Gao, and T. Asfour, “Learning via-point movement primitives with inter- and extrapolation capabilities,” in International Conference on Intelligent Robots and Systems, IEEE/RSJ, 2019, pp. 4301–4308. Available at: KIT-H2T.10.1109/IROS40897.2019.8968586Search in Google Scholar
[16] M. Grotz, D. Sippel, and T. Asfour, “Active vision for extraction of physically plausible support relations,” in International Conference on Humanoid Robots, IEEE-RAS, 2019, pp. 463–469. Available at: KIT-H2T.10.1109/Humanoids43949.2019.9035018Search in Google Scholar
[17] P. Atkar, H. Choset, and A. Rizzi, “Towards optimal coverage of 2-dimensional surfaces embedded in R3${\mathbb{R}}^{3}$: choice of start curve,” in IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 4, 2003, pp. 3581–3587.10.1109/IROS.2003.1249711Search in Google Scholar
[18] A. Bircher, M. Kamel, K. Alexis, et al.., “Three-dimensional coverage path planning via viewpoint resampling and tour optimization for aerial robots,” Aut. Robots, vol. 40, no. 6, pp. 1059–1078, 2016. https://doi.org/10.1007/s10514-015-9517-1.Search in Google Scholar
[19] W. Jing, J. Polden, C. F. Goh, M. Rajaraman, W. Lin, and K. Shimada, “Sampling-based coverage motion planning for industrial inspection application with redundant robotic system,” in IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, 2017, pp. 5211–5218.10.1109/IROS.2017.8206411Search in Google Scholar
[20] P. Hegemann, T. Zechmeister, M. Grotz, K. Hitzler, and T. Asfour, “Learning symbolic failure detection for grasping and mobile manipulation tasks,” in International Conference on Intelligent Robots and Systems, IEEE/RSJ, 2022. Available at: KIT-H2T.10.1109/IROS47612.2022.9982223Search in Google Scholar
Supplementary Material
The online version of this article offers supplementary material (https://doi.org/10.1515/auto-2022-0060).
© 2022 Walter de Gruyter GmbH, Berlin/Boston