Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

QTune: a query-aware database tuning system with deep reinforcement learning

Published: 01 August 2019 Publication History

Abstract

Database knob tuning is important to achieve high performance (e.g., high throughput and low latency). However, knob tuning is an NP-hard problem and existing methods have several limitations. First, DBAs cannot tune a lot of database instances on different environments (e.g., different database vendors). Second, traditional machine-learning methods either cannot find good configurations or rely on a lot of high-quality training examples which are rather hard to obtain. Third, they only support coarse-grained tuning (e.g., workload-level tuning) but cannot provide fine-grained tuning (e.g., query-level tuning).
To address these problems, we propose a query-aware database tuning system QTune with a deep reinforcement learning (DRL) model, which can efficiently and effectively tune the database configurations. QTune first featurizes the SQL queries by considering rich features of the SQL queries. Then QTune feeds the query features into the DRL model to choose suitable configurations. We propose a Double-State Deep Deterministic Policy Gradient (DS-DDPG) model to enable query-aware database configuration tuning, which utilizes the actor-critic networks to tune the database configurations based on both the query vector and database states. QTune provides three database tuning granularities: query-level, workload-level, and cluster-level tuning. We deployed our techniques onto three real database systems, and experimental results show that QTune achieves high performance and outperforms the state-of-the-art tuning methods.

References

[1]
A. F. Agarap. Deep learning using rectified linear units (relu). CoRR, abs/1803.08375, 2018.
[2]
D. V. Aken, A. Pavlo, G. J. Gordon, and B. Zhang. Automatic database management system tuning through large-scale machine learning. In SIGMOD, pages 1009--1024, 2017.
[3]
R. Ali, N. Shahin, Y. B. Zikria, B. Kim, and S. W. Kim. Deep reinforcement learning paradigm for performance optimization of channel observation-based MAC protocols in dense wlans. IEEE Access, 7:3500--3511, 2019.
[4]
D. Basu, Q. Lin, W. Chen, H. T. Vo, Z. Yuan, P. Senellart, and S. Bressan. Regularized cost-model oblivious database tuning with reinforcement learning. T. Large-Scale Data- and Knowledge-Centered Systems, 28:96--132, 2016.
[5]
P. Belknap, B. Dageville, K. Dias, and K. Yagoub. Self-tuning for SQL performance in oracle database 11g. In ICDE, pages 1694--1700, 2009.
[6]
S. G. Dikaleh, D. Xiao, C. Felix, D. Mistry, and M. Andrea. Introduction to neural networks. In CASCON, page 299, 2017.
[7]
S. Duan, V. Thummala, and S. Babu. Tuning database configuration parameters with ituned. PVLDB, 2(1):1246--1257, 2009.
[8]
M. Ester, H. Kriegel, J. Sander, and X. Xu. A density-based algorithm for discovering clusters in large spatial databases with noise. In KDD, pages 226--231, 1996.
[9]
V. François-Lavet, P. Henderson, R. Islam, M. G. Bellemare, and J. Pineau. An introduction to deep reinforcement learning. CoRR, abs/1811.12560, 2018.
[10]
D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. CoRR, abs/1412.6980, 2014.
[11]
T. Kraska, M. Alizadeh, A. Beutel, E. H. Chi, A. Kristo, G. Leclerc, S. Madden, H. Mao, and V. Nathan. Sagedb: A learned database system. In CIDR, 2019.
[12]
S. Krishnan. Hierarchical Deep Reinforcement Learning For Robotics and Data Science. PhD thesis, University of California, Berkeley, USA, 2018.
[13]
G. Li. Human-in-the-loop data integration. PVLDB, 10(12):2006--2017, 2017.
[14]
G. Li, X. Zhou, and S. Li. Xuanyuan:anai-nativedatabase. In IEEE Data Bulletin, 2019.
[15]
K. Li and G. Li. Approximate query processing: What is new and where to go? Data Science and Engineering, 3(4):379--397, 2018.
[16]
T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra. Continuous control with deep reinforcement learning. CoRR, abs/1509.02971, 2015.
[17]
R. Lin, M. D. Stanley, M. M. Ghassemi, and S. Nemati. A deep deterministic policy gradient approach to medication dosing and surveillance in the ICU. In EMBC, pages 4927--4931, 2018.
[18]
O. Luaces, J. Díez, J. Barranquero, J. J. del Coz, and A. Bahamonde. Binary relevance efficacy for multilabel classification. Progress in AI, 1(4):303--313, 2012.
[19]
V. Maglogiannis, D. Naudts, A. Shahid, and I. Moerman. A q-learning scheme for fair coexistence between LTE and wi-fi in unlicensed spectrum. IEEE Access, 6:27278-27293, 2018.
[20]
R. Marcus and O. Papaemmanouil. Deep reinforcement learning for join order enumeration. In SIGMOD workshop, pages 3:1--3:4, 2018.
[21]
V. Mnih, K. Kavukcuoglu, D. Silver, and etc. Human-level control through deep reinforcement learning. Nature, 518(7540):529--533, 2015.
[22]
R. Munos and A. W. Moore. Variable resolution discretization in optimal control. Machine Learning, 49(2-3):291--323, 2002.
[23]
Z. Ni, H. He, D. Zhao, and D. V. Prokhorov. Reinforcement learning control based on multi-goal representation using hierarchical heuristic dynamic programming. In IJCNN, pages 1--8, 2012.
[24]
A. Nowé and T. Brys. A gentle introduction to reinforcement learning. In SUM, pages 18--32, 2016.
[25]
J. S. Oh and S. H. Lee. Resource selection for autonomic database tuning. In ICDE, page 1218, 2005.
[26]
J. Read, B. Pfahringer, G. Holmes, and E. Frank. Classifier chains for multi-label classification. Machine Learning, 85(3):333--359, 2011.
[27]
D. G. Sullivan, M. I. Seltzer, and A. Pfeffer. Using probabilistic reasoning to automate software tuning. In SIGMETRICS, pages 404--405, 2004.
[28]
J. Sun and G. Li. An end-to-end learning-based cost estimator. CoRR, abs/1906.02560, 2019.
[29]
K. Tzoumas, T. Sellis, and C. S. Jensen. A reinforcement learning approach for adaptive query processing. 2008.
[30]
H. van Hasselt. Double q-learning. In NIPS, pages 2613--2621, 2010.
[31]
G. Vargas-Solar, J.-L. Zechinelli-Martini, and J.-A. Espinosa-Oviedo. Big data management: What to keep from the past to face future challenges? Data Science and Engineering, 2(4):328--345, 2017.
[32]
C. Watkins and P. Dayan. Technical note q-learning. Machine Learning, 8:279--292, 1992.
[33]
Z. Wei, Z. Ding, and J. Hu. Self-tuning performance of database systems based on fuzzy rules. In FSKD, pages 194--198, 2014.
[34]
G. Weikum, A. Mönkeberg, C. Hasse, and P. Zabback. Self-tuning database technology and information services: from wishful thinking to viable engineering. In VLDB, pages 20--31, 2002.
[35]
E. Wu. Crazy idea! databases reinforcement-learning research. In CIDR, 2019.
[36]
J. Zhang, Y. Liu, K. Zhou, and G. Li. An end-to-end automatic cloud database tuning system using deep reinforcement learning. In SIGMOD, 2019.
[37]
C. Zheng, Z. Ding, and J. Hu. Self-tuning performance of database systems with neural network. In ICIC, pages 1--12, 2014.
[38]
Y. Zhu, J. Liu, M. Guo, Y. Bao, W. Ma, Z. Liu, K. Song, and Y. Yang. Bestconfig: tapping the performance potential of systems via automatic configuration tuning. In SoCC, pages 338--350, 2017.

Cited By

View all
  • (2024)Db2une: Tuning Under Pressure via Deep LearningProceedings of the VLDB Endowment10.14778/3685800.368581117:12(3855-3868)Online publication date: 1-Aug-2024
  • (2024)Hit the Gym: Accelerating Query Execution to Efficiently Bootstrap Behavior Models for Self-Driving Database Management SystemsProceedings of the VLDB Endowment10.14778/3681954.368203017:11(3680-3693)Online publication date: 1-Jul-2024
  • (2024)A Spark Optimizer for Adaptive, Fine-Grained Parameter TuningProceedings of the VLDB Endowment10.14778/3681954.368202117:11(3565-3579)Online publication date: 1-Jul-2024
  • Show More Cited By
  1. QTune: a query-aware database tuning system with deep reinforcement learning

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image Proceedings of the VLDB Endowment
    Proceedings of the VLDB Endowment  Volume 12, Issue 12
    August 2019
    547 pages

    Publisher

    VLDB Endowment

    Publication History

    Published: 01 August 2019
    Published in PVLDB Volume 12, Issue 12

    Qualifiers

    • Research-article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)226
    • Downloads (Last 6 weeks)20
    Reflects downloads up to 20 Nov 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)Db2une: Tuning Under Pressure via Deep LearningProceedings of the VLDB Endowment10.14778/3685800.368581117:12(3855-3868)Online publication date: 1-Aug-2024
    • (2024)Hit the Gym: Accelerating Query Execution to Efficiently Bootstrap Behavior Models for Self-Driving Database Management SystemsProceedings of the VLDB Endowment10.14778/3681954.368203017:11(3680-3693)Online publication date: 1-Jul-2024
    • (2024)A Spark Optimizer for Adaptive, Fine-Grained Parameter TuningProceedings of the VLDB Endowment10.14778/3681954.368202117:11(3565-3579)Online publication date: 1-Jul-2024
    • (2024)The Holon Approach for Simultaneously Tuning Multiple Components in a Self-Driving Database Management System with Machine Learning via Synthesized Proto-ActionsProceedings of the VLDB Endowment10.14778/3681954.368200717:11(3373-3387)Online publication date: 30-Aug-2024
    • (2024)DEX: Scalable Range Indexing on Disaggregated MemoryProceedings of the VLDB Endowment10.14778/3675034.367505017:10(2603-2616)Online publication date: 1-Jun-2024
    • (2024)D-Bot: Database Diagnosis System using Large Language ModelsProceedings of the VLDB Endowment10.14778/3675034.367504317:10(2514-2527)Online publication date: 1-Jun-2024
    • (2024)GPTuner: A Manual-Reading Database Tuning System via GPT-Guided Bayesian OptimizationProceedings of the VLDB Endowment10.14778/3659437.365944917:8(1939-1952)Online publication date: 1-Apr-2024
    • (2024)Eraser: Eliminating Performance Regression on Learned Query OptimizerProceedings of the VLDB Endowment10.14778/3641204.364120517:5(926-938)Online publication date: 1-Jan-2024
    • (2024)Challenges & Opportunities in Automating DBMS: A Qualitative StudyProceedings of the 39th IEEE/ACM International Conference on Automated Software Engineering10.1145/3691620.3695264(2013-2023)Online publication date: 27-Oct-2024
    • (2024)CAMAL: Optimizing LSM-trees via Active LearningProceedings of the ACM on Management of Data10.1145/36771382:4(1-26)Online publication date: 30-Sep-2024
    • Show More Cited By

    View Options

    Login options

    Full Access

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media