MicroRNA Profiling in Papillary Thyroid Cancer
<p>This workflow diagram illustrates the steps of the miRNA analysis of PTC patients. We reviewed 161 anonymized PTC cases of the tissue archives, from which 129 were selected as eligible based on histopathological evaluation. A total of 258 thyroid tissue samples (129-129 tumor and control samples, respectively) related to these cases were then collected and subjected to sectioning. Then, the sections underwent miRNA isolation and quality control of RNA concentrations, leading to the exclusion of samples being evaluated as inapplicable isolate specimens. The remaining samples were then subjected to sequencing, after which a bioinformatic and statistical assessment was conducted on the data in the context of 2656 different miRNA types in total. Bioinformatic evaluation led to the further exclusion of 1 sample pair (both tumor and control) due to insufficient sequencing yield detected. Finally, we were able to establish those miRNAs which show significantly different expression patterns in PTC and non-PTC tissues related to 118 patients in total.</p> "> Figure 2
<p>The bars of this chart present the log<sub>2</sub> fold change of the top 20 miRNAs (named on the vertical axis) selected based on their significantly different expression profiles between the cancer and control groups. Bars that extend to the right of the zero line (red) show overexpression of the particular miRNA in tumor tissue, while those to the left (blue) indicate underexpression.</p> "> Figure 3
<p>This volcano plot illustrates the different expressions of the miRNAs. On the horizontal axis, the log<sub>2</sub> fold change is represented, highlighting the magnitude of expression deviations. The vertical axis illustrates the negative logarithm of the <span class="html-italic">p</span>-value (−log<sub>10</sub>P), reflecting the statistical significance of the expression change related to each miRNA. Dots above the horizontal threshold line (blue and red) represent miRNAs that pass the significance criterion. Dots to the right or left of the vertical threshold lines (red) indicate not only high significance levels but also a substantial overexpression or underexpression of the corresponding miRNAs, respectively. Dots below the horizontal threshold line represent miRNAs with large fold changes that are not statistically significant (green) or miRNAs that do not meet any of the threshold values (gray).</p> "> Figure 4
<p>In this heatmap, the rows correspond to the “top miRNAs” (n = 30) of this study, selected based on their significantly different expression levels between tumor (red) and control (blue) groups categorized by histopathological characteristics. (<b>A</b>) Each column represents one tissue sample (n = 236) subjected to molecular analysis. The color intensity within each cell reflects the Z-score derived from the normalized number of reads aligned to significant “top miRNAs”, with more red shades indicating higher expression and more blue indicating a lower expression pattern of the particular miRNA of the row. (<b>B</b>) Hierarchical clustering is applied to both “top miRNAs” and samples of the two groups, as shown by the black branches, grouping similar expression profiles together. The vertical dendrogram (black lines on the vertical axis) illustrates the hierarchical clustering of “top miRNAs”, categorizing them based on the similarity in their expression patterns across all samples, while the horizontal dendrogram (black branches on the horizontal axis) represents the hierarchical clustering of samples, highlighting that the samples with similar miRNA expression profiles tend to fall into the same (either control or tumor) group (<b>C</b>,<b>D</b>).</p> "> Figure 5
<p>Comparative principal component analysis of miRNA expressions in tumor and control samples. In plot (<b>A</b>), a PCA of all miRNA expressions tested is shown, with the horizontal axis representing Principal Component 1 (PC1), which accounts for 44.27% of the variance, and the vertical axis representing Principal Component 2 (PC2), accounting for 17.78% of the variance. Variables of the control group are marked in red and the tumor group in blue, indicating moderate separation along PC1, suggesting differential expression patterns between the two states. Plot (<b>B</b>) however displays a PCA focused exclusively on miRNA expressions found to be significant previously, with PC1 explaining a dominant 86.07% of the variance and PC2 accounting for 12.14%. Here, the separation between the two groups is more pronounced along PC1, indicating an explicit distinction in the expression profiles. The juxtaposition of these two plots highlights that specific miRNAs (marked as significant) contribute mostly to the molecular variance between the tumor and non-tumor conditions. The comparison illustrates the utility of focusing on significant miRNAs for a more targeted understanding of the molecular background of PTC.</p> "> Figure 6
<p>KEGG and Gene Ontology (GO) enrichment analyses (ORA—over-representation analysis) based on statistically significant (<span class="html-italic">p</span> ≤ 0.05) miRNAs of this study. Associations were found between the miRNA expression patterns in PTC marked as significant and the molecular patterns of pathways (<b>A</b>) listed in the KEGG database as well as biological processes (<b>B</b>), cellular components (<b>C</b>), and molecular functions (<b>D</b>) listed in the GO database. Based on the strength of significance, the plot visualizes the top 20 molecular patterns of the KEGG and GO databases showing potential correlation with PTC. Each bar represents a pathway, a biological process, a cellular component, or a molecular function of these databases (vertical axes), with the length of the bar reflecting the significance of a possible association with PTC as indicated by the −log10 of the adjusted <span class="html-italic">p</span>-value (P.adj) (horizontal axes). The color gradient conveys the adjusted <span class="html-italic">p</span>-value, transitioning from yellow (less significant) to dark purple (more significant). The data suggest that these molecular patterns (<b>A</b>–<b>D</b>) may be influenced by the same miRNAs as the development and/or progression of PTC.</p> "> Figure 6 Cont.
<p>KEGG and Gene Ontology (GO) enrichment analyses (ORA—over-representation analysis) based on statistically significant (<span class="html-italic">p</span> ≤ 0.05) miRNAs of this study. Associations were found between the miRNA expression patterns in PTC marked as significant and the molecular patterns of pathways (<b>A</b>) listed in the KEGG database as well as biological processes (<b>B</b>), cellular components (<b>C</b>), and molecular functions (<b>D</b>) listed in the GO database. Based on the strength of significance, the plot visualizes the top 20 molecular patterns of the KEGG and GO databases showing potential correlation with PTC. Each bar represents a pathway, a biological process, a cellular component, or a molecular function of these databases (vertical axes), with the length of the bar reflecting the significance of a possible association with PTC as indicated by the −log10 of the adjusted <span class="html-italic">p</span>-value (P.adj) (horizontal axes). The color gradient conveys the adjusted <span class="html-italic">p</span>-value, transitioning from yellow (less significant) to dark purple (more significant). The data suggest that these molecular patterns (<b>A</b>–<b>D</b>) may be influenced by the same miRNAs as the development and/or progression of PTC.</p> "> Figure 7
<p>Triple circle network graph illustrating the most relevant miRNA expression differences between certain states of the examined clinicopathological variables such as age, sex, ATA risk, and stages (TNM and AJCC eighth edition) (middle circle, black nodes). Differentially expressed miRNAs within the control samples are represented as blue nodes (outermost circle), whereas they are indicated as red nodes in the context of tumor samples (innermost circle). All red and blue nodes represent a significant change (<span class="html-italic">p</span> < 0.05) in miRNA expression in relation to at least one clinicopathological variable. The significant associations are indicated by lines, with blue indicating negative changes and red indicating positive changes in miRNA expressions. The color gradient of the lines from blue to red represents the log<sub>2</sub> fold change (log<sub>2</sub>FC) of miRNA expressions, with darker shades representing greater expression differences and thus stronger links. To provide a clear and uncluttered visual representation of the network structure, the graph is devoid of any node labels related to associations with log<sub>2</sub>FC values between 10 and −10.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Study Population
2.2. Descriptive Analysis
2.3. Principal Component Analysis of Every Studied miRNA and Those with Significant Expression Differences
2.4. KEGG Pathway Analysis and Gene Ontology Biological Process, Cellular Component, and Molecular Function Enrichment Analyses Based on Statistically Significant (p ≤ 0.05) miRNAs (ORA—Over-Representation Analysis)
2.5. Association Analysis between miRNA Expressions and States of Selected Clinicopathological Variables
3. Discussion
4. Materials and Methods
4.1. Study Population, Sample Collection, and Histopathological Processing
4.2. Molecular Processing (miRNA Isolation, Quality Control (QC), miRNA Quantification, and Sequencing)
4.3. Data Analysis via Bioinformatics and Statistical Evaluation
4.4. Literature Review
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bartel, D.P. Review MicroRNAs: Genomics, Biogenesis, Mechanism, and Function ulation of hematopoietic lineage differentiation in mam-mals (Chen et al., 2004), and control of leaf and flower development in plants (Aukerman and Sakai). Cell 2004, 116, 281–297. [Google Scholar] [CrossRef] [PubMed]
- Ambros, V. miRNAs Found by Genomics and Reverse Genetics [Internet]. 2004. Available online: www.nature.com/nature (accessed on 1 January 2024).
- Mazeh, H.; Levy, Y.; Mizrahi, I.; Appelbaum, L.; Ilyayev, N.; Halle, D.; Freund, H.R.; Nissan, A. Differentiating benign from malignant thyroid nodules using micro ribonucleic acid amplification in residual cells obtained by fine needle aspiration biopsy. J. Surg. Res. 2013, 180, 216–221. [Google Scholar] [CrossRef] [PubMed]
- Rossing, M.; Kaczkowski, B.; Futoma-Kazmierczak, E.; Glud, M.; Klausen, M.; Faber, J.; Nygaard, B.; Kiss, K.; Sørensen, C.H.; Nielsen, F.C.; et al. A simple procedure for routine RNA extraction and miRNA array analyses from a single thyroid in vivo fine needle aspirate. Scand. J. Clin. Lab. Investig. 2010, 70, 529–534. [Google Scholar] [CrossRef] [PubMed]
- Geropoulos, G.; Psarras, K.; Papaioannou, M.; Giannis, D.; Meitanidou, M.; Kapriniotis, K.; Symeonidis, N.; Pavlidis, E.T.; Pavlidis, T.E.; Sapalidis, K.; et al. Circulating microRNAs and Clinicopathological Findings of Papillary Thyroid Cancer: A Systematic Review. In Vivo 2022, 36, 1551–1569. [Google Scholar] [CrossRef]
- Ghafouri-Fard, S.; Shirvani-Farsani, Z.; Taheri, M. The role of microRNAs in the pathogenesis of thyroid cancer. Non-Coding RNA Res. 2020, 5, 88–98. [Google Scholar] [CrossRef]
- Ruiz-Pozo, V.A.; Cadena-Ullauri, S.; Guevara-Ramírez, P.; Paz-Cruz, E.; Tamayo-Trujillo, R.; Zambrano, A.K. Differential microRNA expression for diagnosis and prognosis of papillary thyroid cancer. Front. Med. 2023, 10, 1139362. [Google Scholar] [CrossRef]
- Sassi, Y.; Avramopoulos, P.; Ramanujam, D.P.; Grüter, L.; Werfel, S.; Giosele, S.; Brunner, A.-D.; Esfandyari, D.; Papadopoulou, A.-S.; De Strooper, B.; et al. Cardiac myocyte miR-29 promotes pathological remodeling of the heart by activating Wnt signaling. Nat. Commun. 2017, 8, 1614. [Google Scholar] [CrossRef]
- Reddy, S.; Hu, D.-Q.; Zhao, M.; Blay, E.; Sandeep, N.; Ong, S.-G.; Jung, G.; Kooiker, K.B.; Coronado, M.; Fajardo, G.; et al. miR-21 is associated with fibrosis and right ventricular failure. JCI Insight 2017, 2, e91625. [Google Scholar] [CrossRef]
- De Martinis, M.; Ginaldi, L.; Allegra, A.; Sirufo, M.M.; Pioggia, G.; Tonacci, A.; Gangemi, S. The osteoporosis/microbiota linkage: The role of miRNA. Int. J. Mol. Sci. 2020, 21, 8887. [Google Scholar] [CrossRef]
- Ghaffari, M.; Razi, S.; Zalpoor, H.; Nabi-Afjadi, M.; Mohebichamkhorami, F.; Zali, H. Association of MicroRNA-146a with Type 1 and 2 Diabetes and their Related Complications. J. Diabetes Res. 2023, 2023, 2587104. [Google Scholar] [CrossRef]
- Nielsen, L.B.; Wang, C.; Sørensen, K.; Bang-Berthelsen, C.H.; Hansen, L.; Andersen, M.-L.M.; Hougaard, P.; Juul, A.; Zhang, C.-Y.; Pociot, F.; et al. Circulating levels of MicroRNA from children with newly diagnosed type 1 diabetes and healthy controls: Evidence that miR-25 associates to residual beta-cell function and glycaemic control during disease progression. Exp. Diabetes Res. 2012, 2012, 896362. [Google Scholar]
- Xie, Y.; Zhang, L.; Gao, Y.; Ge, W.; Tang, P. The multiple roles of microrna-223 in regulating bone metabolism. Molecules 2015, 20, 19433–19448. [Google Scholar] [CrossRef] [PubMed]
- Plotkin, L.I.; Wallace, J.M. MicroRNAs and osteocytes. Bone 2021, 150, 115994. [Google Scholar] [CrossRef]
- Li, M.P.; Hu, Y.D.; Hu, X.L.; Zhang, Y.J.; Yang, Y.L.; Jiang, C.; Tang, J.; Chen, X.P. MiRNAs and miRNA polymorphisms modify drug response. Int. J. Environ. Res. Public Health 2016, 13, 1096. [Google Scholar] [CrossRef] [PubMed]
- Esquela-Kerscher, A.; Slack, F.J. Oncomirs—MicroRNAs with a role in cancer. Nat. Rev. Cancer 2006, 6, 259–269. [Google Scholar] [CrossRef] [PubMed]
- Ab Mutalib, N.S.; Othman, S.N.; Yusof, A.M.; Suhaimi, S.N.A.; Muhammad, R.; Jamal, R. Integrated microRNA, gene expression and transcription factors signature in papillary thyroid cancer with lymph node metastasis. PeerJ 2016, 2016, e2119. [Google Scholar] [CrossRef]
- Li, X.; Abdel-Mageed, A.B.; Mondal, D.; Kandil, E. MicroRNA expression profiles in differentiated thyroid cancer, a review. Int. J. Clin. Exp. Med. 2013, 6, 74–80. [Google Scholar]
- Le, F.; Luo, P.; Yang, Q.O.; Zhong, X.M. MiR-181a promotes growth of thyroid cancer cells by targeting tumor suppressor RB1. Eur. Rev. Med. Pharmacol. Sci. 2017, 21, 5638–5647. [Google Scholar]
- Calin, G.A.; Croce, C.M. MicroRNA signatures in human cancers. Nat. Rev. Cancer 2006, 6, 857–866. [Google Scholar] [CrossRef]
- Toraih, E.A.; Fawzy, M.S.; Hussein, M.H.; El-Labban, M.M.; Ruiz, E.M.L.; Attia, A.A.; Halat, S.; Moroz, K.; Errami, Y.; Zerfaoui, M.; et al. MicroRNA-based risk score for predicting tumor progression following radioactive iodine ablation in well-differentiated thyroid cancer patients: A propensity-score matched analysis. Cancers 2021, 13, 4649. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.T.; Kitabayashi, N.; Zhou, X.K.; Fahey, T.J.; Scognamiglio, T. MicroRNA analysis as a potential diagnostic tool for papillary thyroid carcinoma. Mod. Pathol. 2008, 21, 1139–1146. [Google Scholar] [CrossRef] [PubMed]
- Nikiforova, M.N.; Tseng, G.C.; Steward, D.; Diorio, D.; Nikiforov, Y.E. MicroRNA expression profiling of thyroid tumors: Biological significance and diagnostic utility. J. Clin. Endocrinol. Metab. 2008, 93, 1600–1608. [Google Scholar] [CrossRef] [PubMed]
- Cancer Genome Atlas Research Network. Integrated Genomic Characterization of Papillary Thyroid Carcinoma. Cell 2014, 159, 676–690. [Google Scholar] [CrossRef]
- Bertol, B.C.; Massaro, J.D.; Debortoli, G.; Santos, A.L.P.; de Araújo, J.N.G.; Giorgenon, T.M.V.; e Silva, M.C.; de Figueiredo-Feitosa, N.L.; Collares, C.V.A.; de Freitas, L.C.C.; et al. BRAF, TERT and HLA-G Status in the Papillary Thyroid Carcinoma: A Clinicopathological Association Study. Int. J. Mol. Sci. 2023, 24, 12459. [Google Scholar] [CrossRef] [PubMed]
- Yusof, A.M.; Jamal, R.; Muhammad, R.; Suhaimi, S.N.A.; Rose, I.M.; Saidin, S.; Ab Mutalib, N.-S. Integrated characterization of MicroRNA and mRNA transcriptome in papillary thyroid carcinoma. Front. Endocrinol. 2018, 9, 158. [Google Scholar]
- Santiago, K.; Chen Wongworawat, Y.; Khan, S. Differential MicroRNA-Signatures in Thyroid Cancer Subtypes. J. Oncol. 2020, 2020, 2052396. [Google Scholar] [CrossRef]
- Ricarte-Filho, J.C.; Casado-Medrano, V.; Reichenberger, E.; Spangler, Z.; Scheerer, M.; Isaza, A.; Baran, J.; Patel, T.; MacFarland, S.P.; Brodeur, G.M.; et al. DICER1 RNase IIIb domain mutations trigger widespread miRNA dysregulation and MAPK activation in pediatric thyroid cancer. Front. Endocrinol. 2023, 14, 1083382. [Google Scholar] [CrossRef]
- Pallante, P.; Visone, R.; Ferracin, M.; Ferraro, A.; Berlingieri, M.T.; Troncone, G.; Chiappetta, G.; Liu, C.G.; Santoro, M.; Negrini, M.; et al. MicroRNA deregulation in human thyroid papillary carcinomas. Endocr. Relat. Cancer 2006, 13, 497–508. [Google Scholar] [CrossRef]
- He, H.; Jazdzewski, K.; Li, W.; Liyanarachchi, S.; Nagy, R.; Volinia, S.; Calin, G.A.; Liu, C.G.; Franssila, K.; Suster, S.; et al. The role of microRNA genes in papillary thyroid carcinoma. Proc. Natl. Acad. Sci. USA 2005, 102, 19075–19080. [Google Scholar] [CrossRef]
- Chou, C.K.; Chen, R.F.; Chou, F.F.; Chang, H.W.; Chen, Y.J.; Lee, Y.F.; Yang, K.D.; Cheng, J.T.; Huang, C.C.; Liu, R.T. miR-146b is Highly Expressed in Adult Papillary Thyroid Carcinomas with High Risk Features Including Extrathyroidal Invasion and the BRAF V600E Mutation. Thyroid 2010, 20, 489–494. [Google Scholar] [CrossRef]
- Hatmal, M.M.; Al-Hatamleh, M.A.I.; Olaimat, A.N.; Alshaer, W.; Hasan, H.; Albakri, K.A.; Alkhafaji, E.; Issa, N.N.; Al-Holy, M.A.; Abderrahman, S.M.; et al. MiRNA-221/222 in thyroid cancer: A meta-analysis. Clin. Chim. Acta 2018, 484, 284–292. [Google Scholar]
- Gómez-Pérez, A.M.; Cornejo Pareja, I.M.; García Alemán, J.; Coín Aragüez, L.; Sebastián Ochoa, A.; Alcaide Torres, J.; Molina Vega, M.; Clu Fernández, C.; Mancha Doblas, I.; Tinahones, F.J. New molecular biomarkers in differentiated thyroid carcinoma: Impact of miR-146, miR-221 and miR-222 levels in the evolution of the disease. Clin. Endocrinol. 2019, 91, 187–194. [Google Scholar] [CrossRef] [PubMed]
- Chou, C.-K.; Yang, K.D.; Chou, F.-F.; Huang, C.-C.; Lan, Y.-W.; Lee, Y.-F.; Kang, H.-Y.; Liu, R.-T. Prognostic implications of miR-146b expression and its functional role in papillary thyroid carcinoma. J. Clin. Endocrinol. Metab. 2013, 98, E196–E205. [Google Scholar] [CrossRef]
- Deng, X.; Wu, B.; Xiao, K.; Kang, J.; Xie, J.; Zhang, X.; Fan, Y. MiR-146b-5p promotes metastasis and induces epithelial-mesenchymal transition in thyroid cancer by targeting ZNRF3. Cell. Physiol. Biochem. 2015, 35, 71–82. [Google Scholar] [CrossRef] [PubMed]
- Khan, R.; Riaz, A.; Abbasi, S.A.; Sadaf, T.; Baig, R.M.; Mansoor, Q. Identification of transcriptional level variations in microRNA-221 and microRNA-222 as alternate players in the thyroid cancer tumor microenvironment. Sci. Rep. 2023, 13, 15800. [Google Scholar] [CrossRef] [PubMed]
- Pishkari, S.; Paryan, M.; Hashemi, M.; Baldini, E.; Mohammadi-Yeganeh, S. The role of microRNAs in different types of thyroid carcinoma: A comprehensive analysis to find new miRNA supplementary therapies. J. Endocrinol. Investig. 2018, 41, 269–283. [Google Scholar] [CrossRef]
- Liu, L.; Wang, J.; Li, X.; Ma, J.; Shi, C.; Zhu, H.; Xi, Q.; Zhang, J.; Zhao, X.; Gu, M. MiR-204-5p suppresses cell proliferation by inhibiting IGFBP5 in papillary thyroid carcinoma. Biochem. Biophys. Res. Commun. 2015, 457, 621–626. [Google Scholar] [CrossRef]
- Schwertheim, S.; Sheu, S.Y.; Worm, K.; Grabellus, F.; Schmid, K.W. Analysis of deregulated miRNAs is helpful to distinguish poorly differentiated thyroid carcinoma from papillary thyroid carcinoma. Horm. Metab. Res. 2009, 41, 475–481. [Google Scholar] [CrossRef]
- Park, J.L.; Kim, S.K.; Jeon, S.; Jung, C.K.; Kim, Y.S. Microrna profile for diagnostic and prognostic biomarkers in thyroid cancer. Cancers 2021, 13, 632. [Google Scholar] [CrossRef]
- Haugen, B.R.; Alexander, E.K.; Bible, K.C.; Doherty, G.M.; Mandel, S.J.; Nikiforov, Y.E.; Pacini, F.; Randolph, G.W.; Sawka, A.M.; Schlumberger, M.; et al. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid 2016, 26, 1–133. [Google Scholar] [CrossRef]
- Kanehisa, M.; Furumichi, M.; Tanabe, M.; Sato, Y.; Morishima, K. KEGG: New perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 2017, 45, D353–D361. [Google Scholar] [CrossRef] [PubMed]
- KEGG Pathways. Available online: https://www.genome.jp/kegg/ (accessed on 1 January 2024).
- The Gene Ontology Consortium; A Aleksander, S.; Balhoff, J.; Carbon, S.; Cherry, J.M.; Drabkin, H.J.; Ebert, D.; Feuermann, M.; Gaudet, P.; Harris, N.L.; et al. The Gene Ontology knowledgebase in 2023. Genetics 2023, 224, iyad031. [Google Scholar] [PubMed]
- Ashburner, M.; Ball, C.A.; Blake, J.A.; Botstein, D.; Butler, H.; Cherry, J.M.; Davis, A.P.; Dolinski, K.; Dwight, S.S.; Eppig, J.T.; et al. Gene Ontology: Tool for the unification of biology The Gene Ontology Consortium. Nat. Genet. 2000, 25, 25–29. [Google Scholar] [CrossRef] [PubMed]
- GeneOntology. Available online: https://geneontology.org/ (accessed on 1 January 2024).
- Abdullah, M.I.; Junit, S.M.; Ng, K.L.; Jayapalan, J.J.; Karikalan, B.; Hashim, O.H. Papillary thyroid cancer: Genetic alterations and molecular biomarker investigations. Int. J. Med. Sci. 2019, 16, 450–460. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Wang, H.; Chen, E.; Xu, Z.; Chen, B.; Lu, G. Candidate microRNAs as biomarkers of thyroid carcinoma: A systematic review, meta-analysis, and experimental validation. Cancer Med. 2016, 5, 2602–2614. [Google Scholar] [CrossRef]
- Silaghi, C.A.; Lozovanu, V.; Silaghi, H.; Georgescu, R.D.; Pop, C.; Dobrean, A.; Georgescu, C.E. The prognostic value of micrornas in thyroid cancers—A systematic review and meta-analysis. Cancers 2020, 12, 2608. [Google Scholar] [CrossRef]
- Geraldo, M.V.; Yamashita, A.S.; Kimura, E.T. MicroRNA miR-146b-5p regulates signal transduction of TGF-Β by repressing SMAD4 in thyroid cancer. Oncogene 2012, 31, 1910–1922. [Google Scholar] [CrossRef]
- McLeod, D.S.A.; Zhang, L.; Durante, C.; Cooper, D.S. Contemporary debates in adult papillary thyroid cancer management. Endocr. Rev. 2019, 40, 1481–1499. [Google Scholar] [CrossRef]
- Yip, L.; Kelly, L.; Shuai, Y.; Armstrong, M.J.; Nikiforov, Y.E.; Carty, S.E.; Nikiforova, M.N. MicroRNA signature distinguishes the degree of aggressiveness of papillary thyroid carcinoma. Ann. Surg. Oncol. 2011, 18, 2035–2041. [Google Scholar] [CrossRef]
- Stojanović, S.; Šelemetjev, S.; Đorić, I.; Miljuš, J.J.; Tatić, S.; Živaljević, V.; Denčić, T.I. BRAFV600E, BANCR, miR-203a-3p and miR-204-3p in Risk Stratification of PTC Patients. Biomedicines 2023, 11, 3338. [Google Scholar] [CrossRef]
- Sheu, S.Y.; Grabellus, F.; Schwertheim, S.; Handke, S.; Worm, K.; Schmid, K.W. Lack of correlation between BRAF V600E mutational status and the expression profile of a distinct set of miRNAs in papillary thyroid carcinoma. Horm. Metab. Res. 2009, 41, 482–487. [Google Scholar] [CrossRef]
- Nixon, A.M.; Provatopoulou, X.; Kalogera, E.; Zografos, G.N.; Gounaris, A. Circulating thyroid cancer biomarkers: Current limitations and future prospects. Clin. Endocrinol. 2017, 87, 117–126. [Google Scholar] [CrossRef] [PubMed]
- Stokowy, T.; Wojtas, B.; Jarzab, B.; Krohn, K.; Fredman, D.; Dralle, H.; Musholt, T.; Hauptmann, S.; Lange, D.; Hegedüs, L.; et al. Two-miRNA classifiers differentiate mutation-negative follicular thyroid carcinomas and follicular thyroid adenomas in fine needle aspirations with high specificity. Endocrine 2016, 54, 440–447. [Google Scholar] [CrossRef] [PubMed]
- Zang, Y.; Zhu, J.; Li, Q.; Tu, J.; Li, X.; Hu, R.; Yang, D. Mir-137-3p modulates the progression of prostate cancer by regulating the JNK3/EZH2 axis. Onco. Targets Ther. 2020, 13, 7921–7932. [Google Scholar] [CrossRef] [PubMed]
- Mazurek, M.; Mlak, R.; Homa-Mlak, I.; Powrózek, T.; Brzozowska, A.; Kwaśniewski, W.; Opielak, G.; Małecka-Massalska, T. Low miR 511-5p Expression as a Potential Predictor of a Poor Nutritional Status in Head and Neck Cancer Patients Subjected to Intensity-Modulated Radiation Therapy. J. Clin. Med. 2022, 11, 805. [Google Scholar] [CrossRef]
- Qiao, D.H.; He, X.M.; Deng, X.; Ji, Y.C.; Yang, H.; Cheng, L.; Zhou, X.Y. Aberrant expression of five miRNAs in papillary thyroid carcinomas. J. Clin. Lab. Anal. 2021, 35, e23907. [Google Scholar] [CrossRef]
- Swierniak, M.; Wojcicka, A.; Czetwertynska, M.; Stachlewska, E.; Maciag, M.; Wiechno, W.; Gornicka, B.; Bogdanska, M.; Koperski, L.; de la Chapelle, A.; et al. In-depth characterization of the MicroRNA transcriptome in normal thyroid and papillary thyroid carcinoma. J. Clin. Endocrinol. Metab. 2013, 98, E1401–E1409. [Google Scholar] [CrossRef]
- Ji, T.; Gao, L.; Yu, Z. Tumor-suppressive microRNA-551b-3p targets H6PD to inhibit gallbladder cancer progression. Cancer Gene Ther. 2021, 28, 693–705. [Google Scholar] [CrossRef]
- Bai, S.Y.; Ji, R.; Wei, H.; Guo, Q.H.; Yuan, H.; Chen, Z.F.; Wang, Y.P.; Liu, Z.; Yang, X.Y.; Zhou, Y.N. Serum miR-551b-3p is a potential diagnostic biomarker for gastric cancer. Turk. J. Gastroenterol. 2019, 30, 415–419. [Google Scholar] [CrossRef]
- Kondrotienė, A.; Daukša, A.; Pamedytytė, D.; Kazokaitė, M.; Žvirblienė, A.; Daukšienė, D.; Simanavičienė, V.; Klimaitė, R.; Golubickaitė, I.; Stakaitis, R.; et al. Papillary thyroid carcinoma tissue mir-146b,-21,-221,-222,-181b expression in relation with clinicopathological features. Diagnostics 2021, 11, 418. [Google Scholar] [CrossRef]
- Zhang, T.; Chen, Y.; Lin, W.; Zheng, J.; Liu, Y.; Zou, J.; Cai, J.; Chen, Y.; Li, Z.; Chen, Y. Prognostic and Immune-Infiltrate Significance of miR-222-3p and Its Target Genes in Thyroid Cancer. Front. Genet. 2021, 12, 710412. [Google Scholar] [CrossRef] [PubMed]
- Dell’aquila, M.; Granitto, A.; Martini, M.; Capodimonti, S.; Cocomazzi, A.; Musarra, T.; Fiorentino, V.; Pontecorvi, A.; Lombardi, C.P.; Fadda, G.; et al. PD-L1 and thyroid cytology: A possible diagnostic and prognostic marker. Cancer Cytopathol. 2020, 128, 177–189. [Google Scholar] [CrossRef] [PubMed]
- Martini, M.; de Pascalis, I.; D’alessandris, Q.G.; Fiorentino, V.; Pierconti, F.; Marei, H.E.-S.; Ricci-Vitiani, L.; Pallini, R.; Larocca, L.M. VEGF-121 plasma level as biomarker for response to anti-angiogenetic therapy in recurrent glioblastoma. BMC Cancer 2018, 18, 553. [Google Scholar] [CrossRef] [PubMed]
- Papaioannou, M.; Chorti, A.G.; Chatzikyriakidou, A.; Giannoulis, K.; Bakkar, S.; Papavramidis, T.S. MicroRNAs in Papillary Thyroid Cancer: What Is New in Diagnosis and Treatment. Front. Oncol. 2022, 11, 755097. [Google Scholar] [CrossRef]
- YLam, A.K.; Coast, G.; Yau Lo, C.; King-Yin Lam, A.; Lo, C.Y.; Siu-Ling Lam, K. Papillary Carcinoma of Thyroid: A 30-yr Clinicopathological Review of the Histological Variants. Endocr. Pathol. 2005, 16, 323–330. [Google Scholar]
- Almukhtar, Z.K. Histopathological Types of Papillary Thyroid Carcinoma: Clinicopathologic Study. Open Access Maced. J. Med. Sci. 2022, 10, 79–83. [Google Scholar] [CrossRef]
PTC Subtype | n= | % |
---|---|---|
Conventional | 96 | 81.35 |
Follicular subtype | 16 | 13.56 |
Oncocytic | 4 | 3.39 |
Columnar cell | 1 | 0.85 |
Warthin-like | 1 | 0.85 |
All PTC subtypes | 118 | 100 |
miRNA | log2 FC | SE | FDR-Corrected p |
---|---|---|---|
hsa-miR-21-5p | 1.227 | 0.130 | 3.969 × 10−19 |
hsa-miR-21-3p | 1.364 | 0.163 | 3.926 × 10−15 |
hsa-miR-31-3p | 1.004 | 0.164 | 3.018 × 10−8 |
hsa-miR-34a-5p | 1.084 | 0.120 | 1.999 × 10−17 |
hsa-miR-187-3p | 1.005 | 0.176 | 2.520 × 10−7 |
hsa-miR-221-5p | 1.560 | 0.144 | 4.208 × 10−25 |
hsa-miR-221-3p | 1.866 | 0.153 | 8.969 × 10−32 |
hsa-miR-222-5p | 1.035 | 0.353 | 0.01644 |
hsa-miR-222-3p | 1.591 | 0.135 | 6.766 × 10−30 |
hsa-miR-137-3p | 1.175 | 0.175 | 9.120 × 10−10 |
hsa-miR-375-3p | 1.823 | 0.178 | 1.694 × 10−22 |
hsa-miR-376a-5p | 1.475 | 0.381 | 8.764 × 10−4 |
hsa-miR-431-5p | 1.189 | 0.209 | 2.520 × 10−7 |
hsa-miR-511-3p | 1.003 | 0.201 | 8.883 × 10−6 |
hsa-miR-146b-5p | 3.345 | 0.202 | 1.294 × 10−58 |
hsa-miR-146b-3p | 3.507 | 0.245 | 4.798 × 10−44 |
hsa-miR-508-3p | 1.017 | 0.159 | 5.819 × 10−9 |
hsa-miR-510-5p | 1.147 | 0.415 | 0.0251 |
hsa-miR-514a-5p | 1.229 | 0.350 | 0.0031 |
hsa-miR-556-5p | 1.333 | 0.312 | 1.913 × 10−4 |
hsa-miR-551b-5p | 2.166 | 0.589 | 0.0017 |
hsa-miR-551b-3p | 5.884 | 0.797 | 1.006 × 10−11 |
hsa-miR-147b-3p | 1.351 | 0.267 | 6.713 × 10−6 |
hsa-miR-1277-5p | 1.064 | 0.415 | 0.0405 |
hsa-miR-514b-5p | 1.245 | 0.278 | 9.230 × 10−5 |
hsa-miR-4695-3p | 1.034 | 0.389 | 0.0317 |
hsa-miR-9983-3p | 1.479 | 0.253 | 1.247 × 10−7 |
hsa-miR-204-3p | −1.175 | 0.170 | 2.675 × 10−10 |
hsa-miR-206 | −2.273 | 0.488 | 4.060 × 10−5 |
hsa-miR-873-3p | −1.316 | 0.197 | 9.781 × 10−10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Armos, R.; Bojtor, B.; Papp, M.; Illyes, I.; Lengyel, B.; Kiss, A.; Szili, B.; Tobias, B.; Balla, B.; Piko, H.; et al. MicroRNA Profiling in Papillary Thyroid Cancer. Int. J. Mol. Sci. 2024, 25, 9362. https://doi.org/10.3390/ijms25179362
Armos R, Bojtor B, Papp M, Illyes I, Lengyel B, Kiss A, Szili B, Tobias B, Balla B, Piko H, et al. MicroRNA Profiling in Papillary Thyroid Cancer. International Journal of Molecular Sciences. 2024; 25(17):9362. https://doi.org/10.3390/ijms25179362
Chicago/Turabian StyleArmos, Richard, Bence Bojtor, Marton Papp, Ildiko Illyes, Balazs Lengyel, Andras Kiss, Balazs Szili, Balint Tobias, Bernadett Balla, Henriett Piko, and et al. 2024. "MicroRNA Profiling in Papillary Thyroid Cancer" International Journal of Molecular Sciences 25, no. 17: 9362. https://doi.org/10.3390/ijms25179362