Influence of Exercise and Genistein to Mitigate the Deleterious Effects of High-Fat High-Sugar Diet on Alzheimer’s Disease-Related Markers in Male Mice
<p>Effect of exercise, genistein, and genistein + exercise combined on HFHS induced changes in physical characteristics. (<b>A</b>) Body weight. Weekly measures of body weight taken throughout the 12-week study. Lean, standard diet (open circle, Ln); high-fat high-sugar diet (solid circle, HFHS); HFHS + exercise (solid square, Ex); HFHS + genistein (solid triangle, Gen); HFHS + genistein + exercise (gray circle, Gen+Ex). (<b>B</b>) Adipose weight. Abdominal adipose weight measured at completion of the study. (<b>C</b>) Serum TNF-α levels. Controls, standard diet (Ln, open bars); high-fat high-sugar diet (HFHS, solid black bars); HFHS + exercise (Ex, horizontal line bars); HFHS + genistein (Gen, hashed bars); HFHS + genistein + exercise (Gen+Ex, gray bars). Data are means ± SEM (n = 7–10/group). * Denotes <span class="html-italic">p</span> < 0.05, statistical difference to lean controls, and # denotes <span class="html-italic">p</span> < 0.05, statistical treatment effect.</p> "> Figure 2
<p>Effect of exercise, genistein, and genistein + exercise combined on expression of pGSK-3β and GSK-3β in male mouse brain. (<b>A</b>) pGSK-3β. Representative blot detecting phosphorylated glycogen synthase kinase, pGSK-3B, with average densitometry data. (<b>B</b>) GSK-3β. Representative blot detecting glycogen synthase kinase, GSK-3β, with average densitometry data. (<b>C</b>) pGSK-3β/GSK-3β ratio. Controls, standard diet (Ln, open bars); high-fat high-sugar diet (HFHS, solid black bars); HFHS + exercise (Ex, horizontal line bars); HFHS + genistein (Gen, hashed bars); HFHS + genistein + exercise (Gen+Ex, gray bars). Data are means ± SEM (n = 4/group). * Denotes <span class="html-italic">p</span> < 0.05, statistical difference to lean controls, and # denotes <span class="html-italic">p</span> < 0.05, statistical treatment effect.</p> "> Figure 3
<p>Effect of exercise, genistein, and genistein + exercise combined on expression of 4G8, CP13, 22c11, and CT20 in male mouse brain. (<b>A</b>) 4G8. Representative blot detecting Aβ using 4G8, with average densitometry data. (<b>B</b>) CP13. Representative blot detecting phosphorylated tau using CP13, with average densitometry data. (<b>C</b>) 22c11. Representative blot, with average densitometry data. (<b>D</b>) CT20. Representative blot detecting pathological cleavage of Aβ using CT20, with average densitometry data. (<b>E</b>) ADAM10. Representative blot detecting A-disintegrin and metalloprotease 10 protein, ADAM10, an alpha-secretase responsible for the non-amyloidogenic pathway of amyloid precursor protein, with average densitometry data. (<b>F</b>) Caspase-3. Representative blot detecting apoptosis using caspase-3, with average densitometry data. Controls, standard diet (Ln, open bars); high-fat high-sugar diet (HFHS, solid black bars); HFHS + exercise (Ex, horizontal line bars); HFHS + genistein (Gen, hashed bars); HFHS + genistein + exercise (Gen+Ex, gray bars). Data are means ± SEM (n = 5–6/group). * Denotes <span class="html-italic">p</span> < 0.05, statistical difference to lean controls, and # denotes <span class="html-italic">p</span> < 0.05, statistical treatment effect.</p> "> Figure 4
<p>Effect of exercise, genistein, and genistein + exercise combined on expression of pIR/IR, pIRS1/IRS1, and GLUT1 in male mouse brain. (<b>A</b>) pIR/IR. Representative blot detecting insulin receptors (phosphorylated/total), with average densitometry data. (<b>B</b>) pIR1S/IRS1. Representative blot detecting insulin receptor substrate (phosphorylated/total), with average densitometry data. (<b>C</b>) GLUT1. Representative blot detecting glucose transporter 1, GLUT1, with average densitometry data. Controls, standard diet (Ln, open bars); high-fat high-sugar diet (HFHS, solid black bars); HFHS + exercise (Ex, horizontal line bars); HFHS + genistein (Gen, hashed bars); HFHS + genistein + exercise (Gen+Ex, gray bars). Data are means ± SEM (n = 4/group). * Denotes <span class="html-italic">p</span> < 0.05, statistical difference to lean controls, and # denotes <span class="html-italic">p</span> < 0.05, statistical treatment effect.</p> "> Figure 5
<p>Effect of exercise, genistein, and genistein + exercise combined on open-field behavioral testing in male mice. Quantification of the time the mice spent in lateral spaces and center areas with distance covered in each and average speed in each space. Controls, standard diet (Ln, open bars); high-fat high-sugar diet (HFHS, solid black bars); HFHS + exercise (Ex, horizontal line bars); HFHS + genistein (Gen, hashed bars); HFHS + genistein + exercise (Gen+Ex, gray bars). Data are means ± SEM (n = 4–5/group). * Denotes <span class="html-italic">p</span> < 0.05, statistical difference to lean controls.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Physical Characteristics
2.2. Evaluation of Key Proteins Involved in Alzheimer’s Disease
2.3. Behavioral Assessments
3. Discussion
4. Materials and Methods
4.1. Mouse Model of Diet Induced Diabetic Obesity
4.2. Behavioral Assessments
4.3. Western Blot Analysis for Total Protein Expression
4.4. Serum Measures
4.5. Statistics
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
TNF-α | Tumor necrosis factor-alpha |
Aβ | Amyloid beta |
pGSK-3β | Phosphorylated glycogen synthase kinase |
GSK-3β | Glycogen synthase kinase |
APP | Amyloid precursor protein |
NFT | Neurofibrillary tangles |
BDNF | Brain-derived neurotrophic factor |
NGF | Nerve growth factor |
HFHS | High-fat high-sugar |
References
- Hu, F.B.; Stampfer, M.J.; Manson, J.E.; Rimm, E.; Colditz, G.A.; Rosner, B.A.; Hennekens, C.H.; Willet, W.C. Dietary fat intake and the risk of coronary heart disease in women. N. Engl. J. Med. 1997, 337, 1491–1499. [Google Scholar] [CrossRef] [PubMed]
- Gross, L.S.; Li, L.; Ford, E.S.; Liu, S. Increased consumption of refined carbohydrates and the epidemic of type 2 diabetes in the United States; an ecologic assessment. Am. J. Clin. Nutr. 2004, 79, 774–779. [Google Scholar] [CrossRef]
- Cordain, L.; Eaton, B.; Sebastian, A.; Mann, N.; Lindeberg, S.; Watkins, B.A.; O’Keefe, J.H.; Brand-Miller, J. Origins and evolution of the Western diet: Health implications for the 21st century. Am. J. Clin. Nutr. 2005, 81, 341–354. [Google Scholar] [CrossRef] [PubMed]
- Khemka, S.; Reddy, A.; Garcia, R.I.; Jacobs, M.; Reddy, R.P.; Roghani, A.K.; Pattoor, V.; Basu, T.; Sehar, U.; Reddy, P.H. Role of diet and exercise in aging, Alzheimer’s disease, and other chronic diseases. Ageing Res. Rev. 2023, 91, 102091. [Google Scholar] [CrossRef] [PubMed]
- Ko, Y.; Chye, S.M. Lifestyle intervention to prevent Alzheimer’s disease. Rev. Neurosci. 2020, 31, 817–824. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Mckeown, R.E.; Muldoon, M.F.; Tang, S. Cognitive perfromance is associated with macronutrient intake in healthy young and middle-aged adults. Nutr. Neurosci. 2006, 9, 179–187. [Google Scholar] [CrossRef] [PubMed]
- Greenwood, C.E.; Winocur, G. High-fat diets, insulin resistance and declining cognitive function. Neurobiol. Aging 2005, 26, 42–45. [Google Scholar] [CrossRef] [PubMed]
- Greenwood, C.E.; Winocur, G. Learning and memory impairment in rats fed a high saturated fat diet. Behav. Neural Biol. 1990, 53, 74–87. [Google Scholar] [CrossRef] [PubMed]
- Xiong, J.; Deng, I.; Kelliny, S.; Lin, L.; Bobrovskaya, L.; Zhou, X.-F. Long term high fat diet induces metabolic disorders and aggravates behavioral disorders and cognitive deficits in MAPT P301L transgenic mice. Metab. Brain Dis. 2022, 37, 1941–1957. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.; Nagayach, A.; Lu, Y.; Peng, H.; Duong, Q.-V.A.; Pham, N.B.; Vuong, C.A.; Bazan, N.G. A high fat, sugar and salt western diet induces motor-muscular and sensory dysfunctions and neurodegeneration in mice during aging: Ameliroative action of metformin. CNS Neurosci. Ther. 2021, 27, 1458–1471. [Google Scholar] [CrossRef] [PubMed]
- Yeh, S.H.-H.; Shie, F.-S.; Liu, H.-K.; Yao, H.-H.; Kao, P.-C.; Lee, Y.-H.; Chen, L.-M.; Hsu, S.-M.; Chao, L.-J.; Wu, K.-W.; et al. A high-sucrose diet aggravates Alzheimer’s disease pathology, attenuates hypothalamic leption signaling, and impairs food-anticipatory activity in APPswe/PS1dE9 mice. Neurobiol. Aging 2020, 90, 60–74. [Google Scholar] [CrossRef] [PubMed]
- Desai, G.S.; Zheng, C.; Geetha, T.; Mathews, S.T.; White, B.D.; Huggins, K.W.; Zizza, C.A.; Broderick, T.B.; Babu, J.R. The pancreas-brain axis: Insight into disrupted mechanisms associating type 2 diabetes and Alzheimer’s disease. J. Alzheimer’s Dis. 2014, 42, 347–356. [Google Scholar] [CrossRef]
- De Felice, F.G.; Lourenco, M.V.; Ferreira, S.T. How does brain insulin resistance develop in Alzheimer’s disease? Alzheimer’s Dement. 2014, 10, S26–S32. [Google Scholar] [CrossRef]
- Arshad, N.A.; Lin, T.S.; Yahaya, M.F. Metabolic syndrome and its effects on the brain: Possible mechanism. CNS Neurol. Disord. Drug Targets 2018, 17, 595–603. [Google Scholar] [CrossRef]
- Murphy, P.A. Phytoestrogen content of processed soybean products. Food Technol. 1982, 36, 60–64. [Google Scholar]
- Rockwood, S.S.; Mason, D.; Lord, R.; Lamar, P.; Prozialeck, W.C.; Al-Nakkash, L. Genistein diet improves body weight, serum glucose and triglyceride levels in both male and female ob/ob mice. Diabetes Metab. Syndr. Obes. Targets Ther. 2019, 12, 2011–2021. [Google Scholar] [CrossRef] [PubMed]
- St Aubin, C.R.; Fisher, A.L.; Hernandez, J.A.; Broderick, T.L.; Al-Nakkash, L. Mitigation of MAFLD in High Fat-High Sucrose-Fructose Fed Mice by a Combination of Genistein Consumption and Exercise Training. Diabetes Metab. Syndr. Obes. Targets Ther. 2022, 15, 2157–2172. [Google Scholar] [CrossRef]
- Mukund, V.; Mukund, D.; Sharma, V.; Mannarapu, M.; Alam, A. Geinstein: Its role in metabolic disease and cancer. Crit. Rev. Oncol. Hematol. 2017, 119, 13–22. [Google Scholar] [CrossRef]
- Uddin, M.S.; Kabir, M.T. Emerging signal regulating potential of genistein against Alzheimer’s disease: A promising molecule of interest. Front. Cell Dev. Biol. 2019, 7, 197. [Google Scholar] [CrossRef] [PubMed]
- Li, R.-Z.; Ding, X.-W.; Geetha, T.; Al-Nakkash, L.; Broderick, T.L.; Babu, J.R. Benefical effect of genistein on diabetes-induced brain damage in the ob/obb mouse model. Drug Des. Dev. Ther. 2020, 14, 3325–3336. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Ding, X.; Geetha, T.; Fadamiro, M.; St Aubin, C.R.; Shim, M.; Al-Nakkash, L.; Broderick, T.L.; Babu, J.R. Effects of genistein and exercise training on brain damage induced by high-fat high-sucrose diet in female C57BL/6 mice. Oxid. Med. Cell. Longev. 2022, 2022, 1560435. [Google Scholar] [CrossRef]
- Khodamoradi, M.; Asadi-Shekaari, M.; Esmaeli-Mahani, S.; Esmaeilpour, K.; Sheibani, V. Effects of genistein on cognitive dysfunction and hippocampal synaptic plasticity impairment in an ovariectomized rat kainic acid model of seizure. Eur. J. Pharmacol. 2016, 786, 1–9. [Google Scholar] [CrossRef]
- Pan, M.; Han, H.; Zhong, C.; Geng, Q. Effects of genistein and daidzein on hippocampus neuronal cell proliferation and BDNF expression in H19-7 neural cell line. J. Nutr. Health Aging 2012, 16, 389–394. [Google Scholar] [CrossRef]
- Valshecchi, A.E.; Franchi, S.; Panerai, A.E.; Rossi, A.; Sacerdote, P.; Colleoni, M. The soy isoflavone genistein reverses oxidative and inflammatory state, neuropathic pain, neurotrophic and vascular deficits in diabetes mouse model. Eur. J. Pharmacol. 2011, 650, 694–702. [Google Scholar] [CrossRef]
- Sonee, M.; Sum, T.; Wang, C.; Mukherjee, S.K. The soy isoflavone, genistein, protects human cortical neuronal cells from oxidative stress. Neurotoxicology 2004, 25, 885–891. [Google Scholar] [CrossRef]
- Park, Y.-J.; Ko, J.W.; Jeon, S.; Kwon, Y.H. Protective effects of genistein against neuronal degeneration in ApoE−/− mice fed a high-fat diet. Nutrients 2016, 8, 1–11. [Google Scholar] [CrossRef]
- Booth, F.W.; Roberts, C.K.; Laye, M.J. Lack of exercise is a major cause of chronic diseases. Comp. Physiol. 2012, 2, 1143–1211. [Google Scholar]
- Kerr, N.R.; Booth, F.W. Contributions of physical inactivity and sedentary behavior to metabolic and endocrine diseases. Trends Endocrinol. Metab. 2022, 33, 817–827. [Google Scholar] [CrossRef]
- Thorp, A.A.; Owen, N.; Neuhaus, M.; Dunstan, D.W. Sedentary behaviors and subsequent health outcomes in adults a systematic review of longitudinal studies, 1996–2011. Am. J. Prev. Med. 2011, 41, 207–215. [Google Scholar] [CrossRef]
- Adult Physical Inactivity Outside of Work. 2024. Available online: www.cdc.gov/physical-activity/php/data/inactivity-maps.html#:~:text=The%20lowest%20prevalence%20of%20inactivity,%2C%20and%20West%20(21.0%25) (accessed on 5 August 2024).
- Ruegsegger, G.N.; Booth, F.W. Health benefits of exercise. Cold Spring Harb. Perspect. Med. 2018, 8, a029694. [Google Scholar] [CrossRef]
- Ogino, E.; Manly, J.J.; Schupf, N.; Mayeux, R.; Gu, Y. Current and past leisure time physical activity in relation to riosk of Alzheimer’s disease in older adults. Alzheimer’s Dement. 2019, 15, 1603–1611. [Google Scholar] [CrossRef]
- Baranowski, B.J.; Marko, D.M.; Fenech, R.K.; Yang, A.J.T.; MacPherson, R.E.K. Healthy brain, healthy life: A review of diet and exercise interventions to promote brain health and reduce Alzheimer’s disease risk. Appl. Physiol. Nutr. Metab. 2020, 45, 1055–1065. [Google Scholar] [CrossRef]
- Hamer, M.; Chida, Y. Physical activity and risk of neurodegenerative disease: A systemic review of prospective evidence. Psychol. Med. 2009, 39, 3–11. [Google Scholar] [CrossRef]
- Brini, S.; Sohrabi, H.R.; Peiffer, J.J.; Karrasch, M.; Hamalainen, H.; Martins, R.N.; Fairchild, T.J. Physical activity in preventing Alzheimer’s disease and cognitove decline: A narrative review. Sports Med. 2018, 48, 29–44. [Google Scholar] [CrossRef]
- Tyndall, A.V.; Clark, C.M.; Anderson, T.J.; Hogan, D.B.; Hill, M.D.; Longman, R.S.; Poulin, M.J. Protective effects of exercise on cognition and brain health in older adults. Exerc. Sports Sci Rev. 2018, 46, 215–223. [Google Scholar] [CrossRef]
- Scarmeas, N.; Luchsinger, J.A.; Schupf, N.; Brickman, A.M.; Cosentino, S.; Tang, M.X.; Stern, Y. Physical activity, diet, and risk of Alzheimer’s disease. JAMA 2009, 302, 627–637. [Google Scholar] [CrossRef]
- Raffin, J. Does physical exercise modify the pathophysiology of Alzheimer’s Disease in older persons? JAR Life 2024, 13, 77–81. [Google Scholar] [CrossRef]
- Lu, Y.; Dong, Y.; Tucker, D.; Wang, R.; Ahmed, M.E.; Brann, D.W.; Zhang, Q. Treadmill exercise exerts neuroprotection and regulates microglial polarization and oxidative stress in a streptozotocin-induced rat model of sporadic Alzheimer’s Disease. J. Alzheimer’s Dis. 2017, 56, 1469–1484. [Google Scholar] [CrossRef]
- Broderick, T.L.; Rasool, S.; Li, R.; Zhang, Y.; Anderson, M.P.; Al-Nakkash, L.; Plochocki, J.H.; Geetha, T.; Babu, J.R. Neuroprotective effects of chronic resveratrol treatment and exercise training in the 3xTg-AD mouse model of Alzheimer’s disease. Int. J. Mol. Sci. 2020, 21, 7337. [Google Scholar] [CrossRef]
- Stranahan, A.M.; Martin, B.; Maudsley, S. Anti-inflammatory effects of physical activity in relationship to improved cognitive status in humans and mouse models of Alzheimer’s disease. Curr. Alzheimer Res. 2012, 9, 86–92. [Google Scholar] [CrossRef]
- Souza, L.C.; Filho, C.B.; Goes, A.T.R.; Del Fabbro, L.; de Gomes, M.G.; Savegnago, L.; Oliveira, M.S.; Jesse, C.R. Neuroprotective effect of physical exercise in a mouse model of Alzheimer’s disease induced by B-amyloid1–40 peptide. Neurotox. Res 2013, 24, 148–163. [Google Scholar] [CrossRef]
- Garcia-Mesa, Y.; Lopez-Ramos, J.C.; Gimenez-Llort, L.; Revilla, S.; Guerra, R.; Gruart, A.; Laferla, F.M.; Cristofol, R.; Delgado-Garcia, J.M.; Sanfeliu, C. Physical exercise protects against Alzheimer’s disease in 3xTg-AD mice. J. Alzheimer’s Dis. 2011, 24, 421–454. [Google Scholar] [CrossRef]
- Liu, Y.; Chu, J.M.T.; Yan, T.; Zhang, Y.; Chen, Y.; Chang, R.C.C.; Wong, G.T.C. Short-term resistance exercise inhibits neuroinflammation and ettenutaes neuropathological changes in 3xTg Alzheimer’s disease mice. J. Neuroinflamm. 2020, 17, 4. [Google Scholar] [CrossRef]
- Al-Nakkash, L.; Clarke, L.L.; Rottinghaus, G.E.; Chen, Y.J.; Cooper, K.; Rubin, L.J. Dietary genistein stimulates anion secretion across female murine intestine. J. Nutr. 2006, 136, 2785–2790. [Google Scholar] [CrossRef]
- Xu, X.; Wang, H.; Murphy, P.; Cook, L.; Hendrich, S. Daidzein is a more bioavailable soymilk isoflavone than is genistein in adult women. J. Nutr. 1994, 124, 825–832. [Google Scholar] [CrossRef] [PubMed]
- Pacholko, A.G.; Wotton, C.A.; Bekar, L.K. Poor diet, stress, and inactivity converge to form a “perfect storm” that drives alzheimer’s disease pathogenesis. Neurodegener. Dis. 2019, 19, 60–77. [Google Scholar] [CrossRef]
- Sharifi-Rad, J.; Quispe, C.; Imran, M.; Rauf, A.; Nadeem, M.; Gondal, T.A.; Ahmad, B.; Atif, M.; Mubarek, M.S.; Styar, O.; et al. Genistein: An integrative overview of its mode of action, pharmacological proerties, and health benefits. Oxid. Med. Cell. Longev. 2021, 2021, 3268136. [Google Scholar] [CrossRef] [PubMed]
- Chaterjee, C.; Gleddie, S.; Xiao, C.-W. Soybean bioactive peptides and thier functional properties. Nutrients 2018, 10, 1211. [Google Scholar] [CrossRef]
- Braak, H.; de Vos, R.A.; Jansen, E.N.; Bratzke, H.; Braak, E. Neuropathological hallmarks of Alzheimer’s and parksinson’s diseases. Prog. Brain Res. 1998, 117, 267–285. [Google Scholar]
- Llorens-Martin, M.; Jurado, J.; Hernendez, F.; Avila, J. GSK-3B, a pivotal kinase in Alzheimer disease. Front. Mol. Neurosci. 2014, 7, 46. [Google Scholar] [CrossRef]
- Cai, Z.; Zhao, Y.; Zhao, B. Roles of glycogen synthase kinase 3 in Alzheimer’s disease. Curr. Alzheimer Res. 2012, 9, 864–879. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Huang, N.-Q.; Yan, F.; Jin, H.; Zhou, S.-Y.; Shui, J.-S.; Jin, F. Diabetes mellitus and Alzheimer’s disease: GSK-3B as a potential link. Behav. Brain Res. 2018, 339, 57–65. [Google Scholar] [CrossRef]
- Jolivalt, C.G.; Lee, C.A.; Beiswenger, K.K.; Smith, J.J.; Orlov, M.; Torrance, M.A.; Maslia, E. Defective insulin signaling pathway and increased GSK-3 activity in the brain of diabetic mice: Parallels with Alzheimer’s disease and corrected by insulin. J. Neurosci. Res. 2008, 86, 3265–3274. [Google Scholar] [CrossRef] [PubMed]
- Kothari, V.; Luo, Y.; Tornabene, T.; O’Neill, A.M.; Greene, M.W.; Geetha, T.; Babu, J.R. High fat diet induces brain insulin resistance and cognitive impairment in mice. Biochem. Biophys. Acta 2017, 1863, 499–508. [Google Scholar] [CrossRef]
- Rad, S.K.; Arya, A.; Karimian, H.; Madhavan, P.; Rizwan, F.; Koshy, S.; Prabhu, G. Mechanism involved in insulin resistance via accumulation of B-amyloid and neurofilrillary tangles: Link between type 2 diabetes and Alzheimer’s disease. Drug Des. Dev. Ther. 2018, 12, 3999–4021. [Google Scholar]
- Yang, Y.; Wang, L.; Zhang, C.; Guo, Y.; Li, J.; Wu, C.; Jiao, J.; Zheng, H. Ginsenoside Rg1 improves Alzheimer’s disease by regulating oxidative stress, apoptosism and neuroinflammation through Wnt/GSK-3B/B-catenin signaling pathway. Chem. Biol. Drug Res. 2022, 99, 884–896. [Google Scholar] [CrossRef]
- Sogorb-Esteve, A.; Garcia-Ayllon, M.-S.; Gobom, J.; Alom, J.; Zetterberg, H.; Blennow, K.; Saez-Valero, J. Levels of ADAM10 are reduced in Alzheimer’s disease CSF. J. Neuroinflamm. 2018, 15, 213. [Google Scholar] [CrossRef]
- Heneka, M.T.; Carson, M.J.; El Khoury, J.; Landreth, G.E.; Brosseron, F.; Feinstein, D.L.; Jacobs, A.H.; Wyss-Coray, T.; Vitorica, J.; Ransohoff, R.M.; et al. Neuroinflammation in Alzheimer’s disease. Lancet Neurol. 2015, 14, 388–405. [Google Scholar] [CrossRef]
- Solinas, G.; Karin, M. JNK1 and IKKbeta: Moelcular links between obesity and metabolic function. FASEB J. 2010, 24, 2596–2611. [Google Scholar] [CrossRef]
- Kalmijn, S.; Launer, L.J.; Ott, A.; Witterman, J.C.; Breteler, M.M. Dietary fat intake and the risk of incident dementia in the Rotterdam Study. Ann. Neurol. 1997, 42, 776–782. [Google Scholar] [CrossRef]
- Morris, M.C.; Evans, D.A.; Bienias, J.L.; Tangney, C.C.; Bennett, D.A.; Aggarwal, N.; Schnider, J.; Wilson, R.S. Dietary fats and the risk of incident Alzheimer disease. Arch. Neurol. 2003, 60, 194–200. [Google Scholar] [CrossRef] [PubMed]
- Power, S.E.; O’Connor, E.M.; Ross, R.P.; Stanton, C.; O’Toole, P.W.; Fitzgerald, G.F.; Jeffery, I.B. Dietary glycemic load associated with cognitive perfromance in elderly subjects. Eur. J. Nutr. 2015, 54, 557–568. [Google Scholar] [CrossRef]
- Messina, M. Soy and health update: Evaluation of the clinical and epidemiologic literature. Nutrients 2016, 8, 754. [Google Scholar] [CrossRef]
- Cui, C.; Birru, R.L.; Snitz, B.E.; Ihara, M.; Kakuta, C.; Lopresti, B.; Aizenstein, H.J.; Lopez, O.L.; Mathis, C.A.; Miyamoto, Y.; et al. Effects of soy isoflavones on cognitive function: A systematic review and meta-analysis of randomized controlled trials. Nutr. Rev. 2020, 78, 134–144. [Google Scholar] [CrossRef] [PubMed]
- Nazari-Khanamiri, F.; Ghasemnejad-Berenji, M. Cellular and molecular mechanisms of genistein in prevention and treatment of diseases: An overview. J. Food Biochem. 2021, 45, e13972. [Google Scholar] [CrossRef] [PubMed]
- Kleinloog, J.P.D.; Tischman, L.; Mensink, R.P.; Adam, T.C.; Jorris, P.J. Longer-term soy nut consumption improves cerebral blood flow and psychmotor speed: Results of a randomized, controlled corssover trial in older men and women. Am. J. Clin. Nutr. 2021, 114, 2097–2106. [Google Scholar] [CrossRef]
- Moran, J.; Garrido, P.; Cabello, E.; Alonso, A.; Gonzalez, C. Effects of estradiol and genistein on the insulin signaling pathway in the cerbral cortexof aged female rats. Exp. Gerontol. 2014, 58, 104–112. [Google Scholar] [CrossRef]
- Zhou, Y.; Qin, S.; Zhu, Y.; Xu, P.; Gu, K. Inverse association between isoflavones and pre-diabetes risk: Evidence from NHANES 2007–2010 and 2017–2018. Front. Nutr. 2023, 10, 1288416. [Google Scholar] [CrossRef]
- Abbasi, E.; Khodadadi, I. Antidiabetic effects of genistein: Mechanism of action. Endocr. Metab. Immune Disord. Drug Targets 2023, 23, 1599–1610. [Google Scholar] [CrossRef]
- MacPherson, R.E.K. Filling the void: A role for exercise-induced BDNF and barin amyloid precurser proetin processing. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2017, 313, R582–R593. [Google Scholar] [CrossRef]
- Yang, A.J.; Hayward, G.C.; MacPherson, R.E.K. Acute exercise and brain BACE1 proetin content: A time course study. Physiol. Rep. 2019, 7, e14084. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Cho, J.; Kang, H. Protective effect of exercise training against the progression of Alzheimer’s disease in 3xTg-AD mice. Behav. Brain Res. 2019, 374, 112105. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Cho, J.; Lee, I.; Jin, Y.J.; Kang, H. Exercise attenuates high-fat diet-induced disease progression in 3xTg-AD mice. Med. Sci. Sports Exerc. 2017, 49, 676–686. [Google Scholar] [CrossRef] [PubMed]
- Do, K.; Laing, B.T.; Landry, T.; Bunner, W.; Mersaud, N.; Matsubara, T.; Li, P.; Yuan, Y.; Lu, Q.; Huang, H. The effects of exercise on hypothalmic neurodegeneration of Alzheimer’s disease mouse model. PLoS ONE 2018, 13, e0190205. [Google Scholar] [CrossRef] [PubMed]
- Orumiyehei, A.; Khoramipour, K.; Rezaei, M.H.; Madadizadeh, E.; Meymandi, M.S.; Mohammadi, F.; Chamanara, M.; Bashiri, H.; Suzuki, K. High-intensity interval training-induced hippocampal molecular changes associated with improvement in anxiety-like behavior but not cognitive function in rats with type 2 diabetes. Brain Sci. 2022, 12, 1280. [Google Scholar] [CrossRef] [PubMed]
- Sennott, J.; Morrissey, J.; Standley, P.R.; Broderick, T.L. Treadmill exercise training fails to reverse defects in glucose. insulin and muscle GLUT4 content in the db/db mouse model of diabetes. Pathophysiology 2008, 15, 173–179. [Google Scholar] [CrossRef]
- Criado-Marrero, M.; Silva, R.J.M.; Velazquez, B.; Hernandez, A.; Colon, M.; Cruz, E.; Soler-Cedeno, O.; Porter, J.T. Dynamic expression of FKBP5 in the medial prefrontal cortex regulates resiliency to conditioned fear. Learn. Mem. 2017, 24, 145–152. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shah, J.; Orosz, T.; Singh, A.; Laxma, S.P.; Gross, R.E.; Smith, N.; Vroegop, S.; Sudler, S.; Porter, J.T.; Colon, M.; et al. Influence of Exercise and Genistein to Mitigate the Deleterious Effects of High-Fat High-Sugar Diet on Alzheimer’s Disease-Related Markers in Male Mice. Int. J. Mol. Sci. 2024, 25, 9019. https://doi.org/10.3390/ijms25169019
Shah J, Orosz T, Singh A, Laxma SP, Gross RE, Smith N, Vroegop S, Sudler S, Porter JT, Colon M, et al. Influence of Exercise and Genistein to Mitigate the Deleterious Effects of High-Fat High-Sugar Diet on Alzheimer’s Disease-Related Markers in Male Mice. International Journal of Molecular Sciences. 2024; 25(16):9019. https://doi.org/10.3390/ijms25169019
Chicago/Turabian StyleShah, Juhi, Tyler Orosz, Avneet Singh, Savan Parameshwar Laxma, Rachel E. Gross, Nicholas Smith, Spencer Vroegop, Sydney Sudler, James T. Porter, Maria Colon, and et al. 2024. "Influence of Exercise and Genistein to Mitigate the Deleterious Effects of High-Fat High-Sugar Diet on Alzheimer’s Disease-Related Markers in Male Mice" International Journal of Molecular Sciences 25, no. 16: 9019. https://doi.org/10.3390/ijms25169019