Effects of Gamma Irradiation on the Fecundity, Fertility, and Longevity of the Invasive Stink Bug Pest Bagrada hilaris (Burmeister) (Hemiptera: Pentatomidae)
<p>Comparison between three treatments (irradiated males only, irradiated females only, and both genders irradiated) on the number of eggs eclosed. Data were fitted by a Weibull model. For clarity, the 95% CI is shown only for the curve <span class="html-italic">irradiated males</span> × <span class="html-italic">fertile females</span>.</p> "> Figure 2
<p>Weibull-1 curves (<span class="html-italic">c</span> parameter set to 0) calculated for the percentage of the response of egg eclosion for the three tested crosses (<span class="html-italic">irradiated males</span> × <span class="html-italic">fertile females; irradiated females</span> × <span class="html-italic">fertile males; both irradiated</span>). The 95% CI is shown only in the case of the irradiated males x fertile females curve, for clarity.</p> "> Figure A1
<p>Comparisons of fecundity (dark blue bars) and fertility (light blue bars) values (mean ± s.e.) of <span class="html-italic">B. hilaris</span> for the 3 treatments and control in the irradiation screening from 16 to 120 Gy.</p> "> Figure A2
<p>Kaplan–Meier curves calculated for males (<b>upper</b> panel) and females (<b>lower</b> panel) treated at high doses (80 Gy upwards) compared with the untreated control.</p> ">
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Insects and Rearing
2.2. Irradiation
2.3. Crosses and Assessments
- (a)
- Irradiated male × Fertile female (IM/FF);
- (b)
- Fertile male × Irradiated female (FM/IF);
- (c)
- Irradiated male × Irradiated female (IM/IF);
- (d)
- Fertile male × Fertile female (FM/FF) (zero-dose control).
2.4. Statistical Analysis
2.4.1. Data Modeling on Reproductive Parameters
2.4.2. Data Modeling for the Dose–Response Estimation in Egg Hatching
2.4.3. Longevity of Adults
3. Results
3.1. Fecundity and Fertility
3.1.1. Effects of Gamma Irradiation on Oviposition and Egg Eclosion
3.1.2. Data Modeling on Reproductive Parameters
3.1.3. Data Modeling on the Percentage of the Response of Egg Eclosion
3.2. Longevity of Adults
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Dose (Gy) | Eggs Oviposited | Eggs Eclosed | % Eclosed | % Response |
---|---|---|---|---|
0 | 141.6 ± 11.5 | 87.5 ± 8.1 | 61.4 ± 2.7 | 100.0 ± 4.8 |
16 | 129.4 ± 21.4 | 49.0 ± 11.1 | 37.4 ± 5.1 | 62.0 ± 8.5 |
24 | 117.0 ± 17.8 | 33.7 ± 7.5 | 31.6 ± 11.2 | 52.5 ± 18.6 |
32 | 111.8 ± 20.2 | 29.4 ± 8.9 | 24.3 ± 4.3 | 40.4 ± 7.1 |
50 | 142.6 ± 24.5 | 15.2 ± 3.4 | 13.5 ± 4.3 | 22.5 ± 7.1 |
60 | 166.8 ± 42.8 | 9.8 ± 4.8 | 6.2 ± 3.4 | 10.4 ± 5.7 |
80 | 206.3 ± 37.8 | 15.3 ± 7.2 | 7.4 ± 4.0 | 12.4 ± 6.6 |
100 | 105.2 ± 22.6 | 0.7 ± 0.3 | 0.7 ± 0.3 | 1.2 ± 0.6 |
120 | 171.6 ± 48.0 | 0.6 ± 0.6 | 0.8 ± 0.8 | 1.3 ± 1.3 |
140 | 150.6 ± 31.1 | 2.4 ± 1.7 | 1.5 ± 0.9 | 2.5 ± 1.5 |
Dose (Gy) | Eggs Oviposited | Eggs Eclosed | % Eclosed | % Response |
---|---|---|---|---|
0 | 141.6 ± 11.5 | 87.5 ± 8.1 | 61.4 ± 2.7 | 100.0 ± 4.8 |
16 | 84.6 ± 16.7 | 24.4 ± 6.3 | 29.3 ± 4.1 | 48.7 ± 6.7 |
24 | 86.0 ± 18.9 | 23.8 ± 6.3 | 26.9 ± 2.1 | 44.6 ± 3.4 |
32 | 25.8 ± 8.4 | 8.0 ± 4.9 | 23.0 ± 13.6 | 38.2 ± 22.5 |
50 | 21.2 ± 4.9 | 8.8 ± 2.3 | 40.2 ± 6.1 | 66.7 ± 10.1 |
60 | 29.8 ± 6.0 | 2.6 ± 1.7 | 8.9 ± 5.7 | 14.9 ± 9.5 |
80 | 17.0 ± 8.1 | 3.8 ± 3.1 | 26.2 ± 14.5 | 43.5 ± 24.1 |
100 | 23.2 ± 5.3 | 4.9 ± 2.1 | 18.9 ± 6.5 | 31.5 ± 10.9 |
120 | 16.4 ± 6.9 | 0.4 ± 0.4 | 2.3 ± 2.3 | 3.8 ± 3.8 |
140 | 9.4 ± 6.2 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 |
Dose (Gy) | Eggs Oviposited | Eggs Eclosed | % Eclosed | % Response |
---|---|---|---|---|
0 | 141.6 ± 11.5 | 87.5 ± 8.1 | 61.4 ± 2.7 | 100.0 ± 4.8 |
16 | 69.6 ± 10.6 | 8.0 ± 3.2 | 11.5 ± 5.1 | 19.1 ± 8.4 |
24 | 60.8 ± 20.6 | 9.8 ± 4.7 | 20.6 ± 11.7 | 60.6 ± 30.4 |
32 | 23.8 ± 11.8 | 1.2 ± 1.0 | 3.3 ± 2.7 | 5.4 ± 4.5 |
50 | 38.0 ± 6.7 | 3.8 ± 2.6 | 8.4 ± 5.6 | 13.9 ± 9.4 |
60 | 17.6 ± 3.2 | 2.4 ± 1.2 | 17.7 ± 8.1 | 29.4 ± 13.4 |
80 | 28.8 ± 1.1 | 3.3 ± 2.0 | 11.5 ± 6.8 | 19.1 ± 11.3 |
100 | 23.0 ± 5.7 | 0.3 ± 0.3 | 1.3 ± 1.3 | 2.1 ± 0.9 |
120 | 19.6 ± 6.4 | 1.6 ± 1.6 | 14.6 ± 14.6 | 24.2 ± 24.2 |
140 | 7.0 ± 1.9 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 |
References
- Singh, H.; Malik, V.S. Biology of painted bug (Bagrada cruciferarum). Indian J. Agric. Sci. 1993, 63, 672–674. [Google Scholar]
- Verma, A.K.; Patyal, S.K.; Bhalla, O.P.; Sharma, K.C. Bioecology of painted bug (Bagrada cruciferarum) (Hemiptera: Pentatomidae) on seed crop of cauliflower (Brassica oleracea var. botrytis subvar. cauliflora). Indian J. Agric. Sci. 1993, 63, 676–678. [Google Scholar]
- Madan, B.D. Biology and Management of Painted Bug, Bagrada hilaris (Burmeister) on Rapeseed-Mustard. PhD Thesis, Department of Entomology, Haryana Agricultural University, Hisar, India, 2015. [Google Scholar]
- Bundy, C.S.; Grasswitz, T.R.; Sutherland, C. First report of the invasive stink bug Bagrada hilaris (Burmeister) (Heteroptera: Pentatomidae) from New Mexico, with notes on its biology. Southwest. Entomol. 2012, 37, 411–414. [Google Scholar] [CrossRef]
- Reed, D.A.; Palumbo, J.C.; Perring, T.M.; May, C. Bagrada hilaris (Hemiptera: Pentatomidae), An Invasive Stink Bug Attacking Cole Crops in the Southwestern United States. J. Integr. Pest Manag. 2013, 4, C1–C7. [Google Scholar] [CrossRef]
- Conti, E.; Avila, G.; Barratt, B.; Cingolani, F.; Colazza, S.; Guarino, S.; Hoelmer, K.; Laumann, R.A.; Maistrello, L.; Martel, G.; et al. Biological control of invasive stink bugs: Review of global state and future prospects. Entomol. Exp. Appl. 2021, 169, 28–51. [Google Scholar] [CrossRef]
- Matsunaga, J.N. Bagrada Bug Bagrada hilaris (Burmeister). State Hawaii Dep. Agric. New Pests Advis. 2014, 14. [Google Scholar] [CrossRef]
- Faúndez, E.I.; Lüer, H.A.; Cuevas, Á.G.; Rider, D.A.; Valdebenito, P. First record of the painted bug Bagrada hilaris (Burmeister, 1835) (Heteroptera: Pentatomidae) in South America. Arq. Entomolóxicos 2016, 16, 175–179. [Google Scholar]
- Carvajal, M.A.; Alaniz, A.J.; Núñez-Hidalgo, I.; González-Césped, C. Spatial global assessment of the pest Bagrada hilaris (Burmeister) (Heteroptera: Pentatomidae): Current and future scenarios. Pest Manag. Sci. 2019, 75, 809–820. [Google Scholar] [CrossRef]
- Bundy, C.S.; Perring, T.M.; Reed, D.A.; Palumbo, J.C.; Grasswitz, T.R.; Jones, W.A. Bagrada hilaris. In Invasive Stink Bugs and Related Species (Pentatomoidea): Biology, Higher Systematics, Semiochemistry, and Management; Mc Pherson, J.E., Ed.; CRC Press, Taylor and Francis: Boca Raton, FL, USA, 2018; pp. 205–241. [Google Scholar]
- Colazza, S.; Guarino, S.; Peri, E. Bagrada hilaris (Burmeister) (Heteroptera: Pentatomidae) a pest of capper in the island of Pantelleria [Capparis spinosa L.; Sicily]. Inf. Fitopatol. 2004, 54, 30–34. [Google Scholar]
- Huang, T.; Reed, D.A.; Perring, T.M.; Palumbo, J.C. Feeding damage by Bagrada hilaris (Hemiptera: Pentatomidae) and impact on growth and chlorophyll content of Brassicaceous plant species. Arthropod-Plant Interact. 2014, 8, 89–100. [Google Scholar] [CrossRef]
- Palumbo, J.C.; Perring, T.M.; Millar, J.G.; Reed, D.A. Biology, Ecology, and Management of an Invasive Stink Bug, Bagrada hilaris, in North America. Annu. Rev. Entomol. 2016, 61, 453–473. [Google Scholar] [CrossRef] [PubMed]
- Palumbo, J.C.; Natwick, E.T. The Bagrada Bug (Hemiptera: Pentatomidae): A New Invasive Pest of Cole Crops in Arizona and California. Plant Health Prog. 2010, 11, 50. [Google Scholar] [CrossRef]
- Ganjisaffar, F.; Talamas, E.J.; Bon, M.C.; Gonzalez, L.; Brown, B.V.; Perring, T.M. Trissolcus hyalinipennis Rajmohana & Narendran (Hymenoptera, Scelionidae), a parasitoid of Bagrada hilaris (Burmeister) (Hemiptera, Pentatomidae), emerges in North America. J. Hymenopt. Res. 2018, 65, 111–130. [Google Scholar] [CrossRef]
- Martel, G.; Augé, M.; Talamas, E.; Roche, M.; Smith, L.; Sforza, R.F.H. First laboratory evaluation of Gryon gonikopalense (Hymenoptera: Scelionidae), as potential biological control agent of Bagrada hilaris (Hemiptera: Pentatomidae). Biol. Control 2019, 135, 48–56. [Google Scholar] [CrossRef]
- Power, N.; Ganjisaffar, F.; Xu, K.; Perring, T.M. Effects of Parasitoid Age, Host Egg Age, and Host Egg Freezing on Reproductive Success of Ooencyrtus mirus (Hymenoptera: Encyrtidae) on Bagrada hilaris (Hemiptera: Pentatomidae) Eggs. Environ. Entomol. 2021, 50, 58–68. [Google Scholar] [CrossRef]
- Tillman, G.; Toews, M.; Blaauw, B.; Sial, A.; Cottrell, T.; Talamas, E.; Buntin, D.; Joseph, S.; Balusu, R.; Fadamiro, H.; et al. Parasitism and predation of sentinel eggs of the invasive brown marmorated stink bug, Halyomorpha halys (Stål) (Hemiptera: Pentatomidae), in the southeastern US. Biological Control 2020, 145, 104247. [Google Scholar] [CrossRef]
- Knipling, E.F. Possibilities of Insect Control or Eradication Through the Use of Sexually Sterile Males. J. Econ. Entomol. 1955, 48, 459–462. [Google Scholar] [CrossRef]
- Klassen, W.; Curtis, C.F. History of the sterile insect technique. In Sterile Insect Technique: Principles and Practice in Area-Wide Integrated Pest Management; Dyck, V., Hendrichs, J., Robinson, A.S., Eds.; Springer: Dordrecht, The Netherlands, 2005; pp. 3–36. ISBN 9781003035572. [Google Scholar]
- Lance, D.R.; McInnis, D.O. Biological basis of the sterile insect technique. In Sterile Insect Technique: Principles and Practice in Area-Wide Integrated Pest Management; Dyck, V.A., Hendrichs, J., Robinson, A.S., Eds.; CRC Press: Boca Raton, FL, USA, 2021; p. 30. ISBN 9781003035572. [Google Scholar]
- Suckling, D.M.; Cristofaro, M.; Roselli, G.; Levy, M.C.; Cemmi, A.; Mazzoni, V.; Stringer, L.D.; Zeni, V.; Ioriatti, C.; Anfora, G. The competitive mating of irradiated brown marmorated stink bugs, Halyomorpha halys, for the sterile insect technique. Insects 2019, 10, 411. [Google Scholar] [CrossRef]
- Yang, S.Y.; Zhan, H.X.; Zhang, F.; Babendreier, D.; Zhong, Y.Z.; Lou, Q.Z.; Zhong, Y.; Zhang, J.P. Development and fecundity of Trissolcus japonicus on fertilized and unfertilized eggs of the brown marmorated stink bug. Halyomorpha halys. J. Pest Sci. 2018, 91, 1335–1343. [Google Scholar] [CrossRef]
- Knipling, E.F. Sterile insect and parasite augmentation techniques: Unexploited solutions for many insect pest problems. Florida Entomologist 1998, 81, 134–160. [Google Scholar]
- Hendrichs, J.; Bloem, K.; Hoch, G.; Carpenter, J.E.; Greany, P.; Robinson, A.S. Improving the cost-effectiveness, trade and safety of biological control for agricultural insect pests using nuclear techniques. Biocontrol Sci. Technol. 2009, 19, 3–22. [Google Scholar] [CrossRef]
- Cornelius, M.L.; Dieckhoff, D.; Hoelmer, K.A.; Olsen, R.T.; Weber, D.C.; Herlihy, M.V.; Talamas, E.J.; Vinyard, B.T.; Greenstone, M.H. Biological control of sentinel egg masses of the exotic invasive sink bug Halyomorpha halys (Stål) in Mid-Atlantic USA ornamental landscapes. Biol. Control 2016, 103, 11–20. [Google Scholar] [CrossRef]
- Stahl, J.; Tortorici, F.; Pontini, M.; Bon, M.C.; Hoelmer, K.A.; Marazzi, C.; Tavella, L.; Haye, T. First discovery of adventive populations of Trissolcus japonicus in Europe. J. Pest Sci. 2019, 92, 371–379. [Google Scholar] [CrossRef]
- Horrocks, K.J.; Avila, G.A.; Holwell, G.I.; Suckling, D.M. Integrating sterile insect technique with the release of sterile classical biocontrol agents for eradication: Is the Kamikaze Wasp Technique feasible? BioControl 2020, 65, 257–271. [Google Scholar] [CrossRef]
- Kapranas, A.; Collatz, J.; Michaelakis, A.; Milonas, P. Review of the role of sterile insect technique within biologically-based pest control–An appraisal of existing regulatory frameworks. Entomol. Exp. Appl. 2022, 170, 385–393. [Google Scholar] [CrossRef]
- Martel, G.; Sforza, R.F.H. Catch me if you can: Novel foraging behavior of an egg parasitoid, Gryon gonikopalense, against the stinkbug pest, Bagrada hilaris. J. Pest Sci. 2021, 94, 1161–1169. [Google Scholar] [CrossRef]
- Taylor, M.E.; Bundy, C.S.; McPherson, J.E. Unusual ovipositional behavior of the stink bug Bagrada hilaris (Hemiptera: Heteroptera: Pentatomidae). Ann. Entomol. Soc. Am. 2014, 107, 872–877. [Google Scholar] [CrossRef]
- Talamas, E.J.; Bremer, J.S.; Moore, M.R.; Bon, M.C.; Lahey, Z.; Roberts, C.G.; Combee, L.A.; McGathey, N.; van Noort, S.; Timokhov, A.V.; et al. A maximalist approach to the systematics of a biological control agent: Gryon aetherium Talamas, sp. nov. (Hymenoptera, Scelionidae). J. Hymenopt. Res. 2021, 87, 323–480. [Google Scholar] [CrossRef]
- Welsh, T.J.; Stringer, L.D.; Caldwell, R.; Carpenter, J.E.; Suckling, D.M. Irradiation biology of male brown marmorated stink bugs: Is there scope for the sterile insect technique? Int. J. Radiat. Biol. 2017, 93, 1357–1363. [Google Scholar] [CrossRef]
- Stringer, L.D.; Harland, D.P.; Grant, J.E.; Laban, J.; Suckling, D.M. Effect of 40Gy irradiation on the ultrastructure, biochemistry, morphology and cytology during spermatogenesis in the southern green stink bug Nezara viridula (Hemiptera: Pentatomidae). bioRxiv 2017, 17, 1991. [Google Scholar] [CrossRef]
- Martel, G.; Scirpoli, F.; Sforza, R.F.H. How an egg parasitoid responds to an unusual stinkbug oviposition behavior: The case of Gryon gonikopalense Sharma (Hymenoptera: Scelionidae) and Bagrada hilaris (Burmeister) (Hemiptera: Pentatomidae). Entomol. Gen. 2021, 457–470. [Google Scholar] [CrossRef]
- Baccaro, S.; Cemmi, A.; Di Sarcina, I.; Ferrara, G. Gamma irradiation Calliope facility at ENEA–Casaccia Research Centre (Rome, Italy). ENEA Tech. Rep. 2 2019, RT/2019/4/, 49. [Google Scholar]
- Crawley, M.J. The R Book; John Wiley & Sons Ltd Publ.: Hoboken, NJ, USA, 2007; pp. 323–324, 628–649. [Google Scholar]
- Ritz, C.; Baty, F.; Streibig, J.C.; Gerhard, D. Dose-response analysis using R. PLoS ONE 2015, 10, e0146021. [Google Scholar] [CrossRef]
- Abbott, W.S. A method of computing the effectiveness of an insecticide. J. Econ. Entomol. 1925, 18, 265–267. [Google Scholar] [CrossRef]
- Murrell, P. R Graphics; Chapman & Hall/CRC Press: Boca Raton, FL, USA, 2005; ISBN1 1420035029. ISBN2 9781420035025. [Google Scholar]
- R Core Team, R. A Language and Environment for Statistical Computing. Available online: https://www.r-project.org/ (accessed on 31 May 2021).
- SPSS Inc. Released 2009. PASW Statistics 17.0 for Windows, Version 17.0.2.; SPSS Inc.: Chicago, IL, USA, 2009. [Google Scholar]
- Robinson, A.S. Genetic Basis of the Sterile Insect Technique. In Sterile Insect Technique: Principles and Practice in Area-Wide Integrated Pest Management; Dyck, V.A., Hendrichs, J., Robinson, A.S., Eds.; CRC Press: Boca Raton, FL, USA, 2021; pp. 95–114. ISBN 9781402040511. [Google Scholar]
- Brower, J.H. Recovery of fertility by irradiated males of the Indian meal moth. J. Econ. Entomol. 1976, 69, 273–276. [Google Scholar] [CrossRef]
- Paoli, F.; Dallai, R.; Cristofaro, M.; Arnone, S.; Francardi, V.; Roversi, P.F. Morphology of the male reproductive system, sperm ultrastructure and γ-irradiation of the red palm weevil Rhynchophorus ferrugineus Oliv. (Coleoptera: Dryophthoridae). Tissue Cell 2014, 46, 274–285. [Google Scholar] [CrossRef]
- Parker, A.G.; Mamai, W.; Maiga, H. Mass-Rearing for the Sterile Insect Technique. In Sterile Insect Technique: Principles and Practice in Area-Wide Integrated Pest Management; Dyck, V.A., Hendrichs, J., Robinson, A.S., Eds.; CRC Press: Boca Raton, FL, USA, 2021. [Google Scholar]
- Klassen, W.; Curtis, C.F.; Hendrichs, J. History of the Sterile Insect Technique. In Sterile Insect Technique: Principles and Practice in Area-Wide Integrated Pest Management; CRC Press: Boca Raton, FL, USA, 2021; ISBN 9781003035572. [Google Scholar]
- Leopold, R.A. Colony maintenance and mass-rearing: Using cold storage technology for extending the shelf-life of insects. In Area-Wide Control of Insect Pests: From Research to Field Implementation; Vreysen, M.J.B., Robinson, A.S., Hendrichs, J., Eds.; Springer: Dordrecht, The Netherlands, 2007; pp. 149–162. ISBN 9781402060595. [Google Scholar]
- Cayol, J.P. Changes in Sexual Behavior and Life History Traits of Tephritid Species Caused by Mass-Rearing Processes. In Fruit Flies (Tephritidae); Aluja, M., Norrbom, A.L., Eds.; CRC Press: Boca Raton, FL, USA, 2001; pp. 861–878. ISBN 9780429124679. [Google Scholar]
- Miyatake, T.; Shimizu, T. Genetic Correlations between Life-History and Behavioral Traits can Cause Reproductive Isolation. Evolution 1999, 53, 201–208. [Google Scholar] [CrossRef]
- Zygouridis, N.E.; Argov, Y.; Nemny-Lavy, E.; Augustinos, A.A.; Nestel, D.; Mathiopoulos, K.D. Genetic changes during laboratory domestication of an olive fly SIT strain. J. Appl. Entomol. 2014, 138, 423–432. [Google Scholar] [CrossRef]
- Denlinger, D.L. Chapter 12: Wider Implications. In Insect Diapause; Cambridge University Press: Cambridge, UK, 2022; pp. 323–342. [Google Scholar] [CrossRef]
- Guarino, S.; De Pasquale, C.; Peri, E.; Alonzo, G.; Colazza, S. Role of volatile and contact pheromones in the mating behaviour of Bagrada hilaris (Heteroptera: Pentatomidae). Eur. J. Entomol. 2008, 105, 613–617. [Google Scholar] [CrossRef]
- Arif, M.A.; Guarino, S.; Colazza, S.; Peri, E. The role of (E)-2-octenyl acetate as a pheromone of Bagrada hilaris (Burmeister): Laboratory and field evaluation. Insects 2020, 11, 109. [Google Scholar] [CrossRef] [PubMed]
- Azim, M.; Shafee, S. The life cycle of Bagrada picta (Fabricius). Articulata 1986, 11, 262–265. [Google Scholar]
- Hogg, B.N.; Hougardy, E.; Talamas, E. Adventive Gryon aetherium Talamas (Hymenoptera, Scelionidae) associated with eggs of Bagrada hilaris (Burmeister) (Hemiptera, Pentatomidae) in the USA. J. Hymenoptera Res. 2017, 87, 481–492. [Google Scholar] [CrossRef]
Response Variable | Model Terms | χ2 | df | p-Value |
---|---|---|---|---|
dose | 54.17 | 1 | 1.8 × 10−13 *** | |
Eggs eclosed | cross | 0.214 | 2 | 0.8972 |
dose × cross | 5.707 | 2 | 0.0576 | |
dose | 1.045 | 1 | 0.3066 | |
Eggs oviposited | cross | 1.509 | 2 | 0.4703 |
dose × cross | 110.36 | 2 | <2.2 × 10−16 *** | |
dose | 263.80 | 1 | <2.2 × 10−16 *** | |
Proportion of hatched eggs | cross | 3.74 | 2 | 0.1544 |
dose × cross | 12.64 | 2 | 1.8 × 10−3 ** |
Response Variable | Levels | Estimate | s.e. | t-Value | p-Value |
---|---|---|---|---|---|
intercept | 4.465 | 0.170 | 26.33 | <2.2 × 10−16 *** | |
Eggs eclosed | dose | −0.033 | 0.006 | −5.32 | 3.4 × 10−7 *** |
FM/IF | 0.024 | 0.243 | 0.10 | 0.922 | |
IM/IF | −0.090 | 0.256 | −0.35 | 0.725 | |
Dose × FM/IF | −0.012 | 0.011 | −1.06 | 0.289 | |
Dose × IM/IF | −0.036 | 0.017 | −2.06 | 0.041 * | |
intercept | 4.855 | 0.094 | 51.81 | <2.2 × 10−16 *** | |
Eggs oviposited | dose | −0.001 | 0.001 | 1.02 | 0.307 |
FM/IF | 0.0237 | 0.243 | 0.09 | 0.573 | |
IM/IF | −0.0901 | 0.256 | −0.35 | 0.455 | |
Dose × FM/IF | −0.0117 | 0.011 | −1.06 | 6.8 × 10−13 *** | |
Dose × IM/IF | −0.0357 | 0.017 | −2.06 | 1.1 × 10−10 *** | |
intercept | −0.754 | 0.170 | −4.44 | 1.7 × 10−5 *** | |
Proportion of hatched eggs | dose | 0.7407 | 0.056 | 13.31 | <2.2 × 10−16 *** |
FM/IF | 0.349 | 0.226 | 1.540 | 0.125 | |
IM/IF | 0.369 | 0.233 | 1.583 | 0.115 | |
Dose × FM/IF | −0.306 | 0.088 | −3.48 | 6.4 × 10−4 *** | |
Dose × IM/IF | −0.017 | 0.110 | −0.16 | 0.875 |
Estimate | ±s.e. | t-Value | p-Value | ||
---|---|---|---|---|---|
b:IM/FF | 1.17043 | a | 0.26005 | 4.5007 | 1.288 × 10–5 *** |
b:FM/IF | 0.73009 | ab | 0.20332 | 3.5908 | 0.0004366 *** |
b:IM/IF | 0.48913 | b | 0.13945 | 3.5075 | 0.0005855 *** |
e:IM/FF | 29.91119 | a | 6.0447 | 4.9483 | 1.861 × 10−6 *** |
e:FM/IF | 27.92878 | a | 8.83973 | 3.1595 | 0.0018863 ** |
e:IM/IF | 6.89095 | b | 4.48994 | 1.5348 | 0.1267950 |
ED (%) | Estimate (Gy) | ±s.e. | Lower | Upper | |
---|---|---|---|---|---|
IM/FF: | 50 | 21.94 | 5.24 | 13.69 | 35.18 |
IM/FF: | 90 | 64.43 | 7.14 | 51.77 | 80.18 |
IM/FF: | 95 | 81.59 | 11.05 | 62.45 | 106.60 |
IM/FF: | 99 | 120.00 | 24.16 | 80.63 | 178.59 |
FM/IF: | 50 | 17.36 | 7.50 | 7.395 | 40.76 |
FM/IF: | 90 | 115.83 | 22.90 | 78.39 | 171.13 |
FM/IF: | 95 | 175.58 | 50.36 | 99.65 | 309.34 |
FM/IF: | 99 | 346.46 | 159.26 | 139.78 | 858.76 |
IM/IF: | 50 | 2.38 | 2.48 | 0.30 | 18.71 |
IM/IF: | 90 | 50.64 | 11.38 | 32.49 | 78.93 |
IM/IF: | 95 | 99.01 | 28.87 | 55.67 | 176.09 |
IM/IF: | 99 | 296.07 | 173.81 | 92.88 | 943.76 |
Longevity (days) | ||||||||
---|---|---|---|---|---|---|---|---|
Dose (Gy) | Male | ±s.e. | n | Female | ±s.e. | n | ||
0 | 21.1 | 1.9 | b | 19 | 28.7 | 2.2 | ab | 38 |
80 | 32.5 | 1.4 | a | 6 | 40.4 | 2.4 | a | 8 |
100 | 23.8 | 1.7 | b | 14 | 26.7 | 3.0 | ab | 21 |
120 | 26.0 | 3.2 | b | 7 | 27.3 | 5.5 | ab | 10 |
140 | 16.5 | 2.5 | b | 8 | 21.0 | 2.4 | b | 10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cristofaro, M.; Sforza, R.F.H.; Roselli, G.; Paolini, A.; Cemmi, A.; Musmeci, S.; Anfora, G.; Mazzoni, V.; Grodowitz, M. Effects of Gamma Irradiation on the Fecundity, Fertility, and Longevity of the Invasive Stink Bug Pest Bagrada hilaris (Burmeister) (Hemiptera: Pentatomidae). Insects 2022, 13, 787. https://doi.org/10.3390/insects13090787
Cristofaro M, Sforza RFH, Roselli G, Paolini A, Cemmi A, Musmeci S, Anfora G, Mazzoni V, Grodowitz M. Effects of Gamma Irradiation on the Fecundity, Fertility, and Longevity of the Invasive Stink Bug Pest Bagrada hilaris (Burmeister) (Hemiptera: Pentatomidae). Insects. 2022; 13(9):787. https://doi.org/10.3390/insects13090787
Chicago/Turabian StyleCristofaro, Massimo, René F. H. Sforza, Gerardo Roselli, Alessandra Paolini, Alessia Cemmi, Sergio Musmeci, Gianfranco Anfora, Valerio Mazzoni, and Michael Grodowitz. 2022. "Effects of Gamma Irradiation on the Fecundity, Fertility, and Longevity of the Invasive Stink Bug Pest Bagrada hilaris (Burmeister) (Hemiptera: Pentatomidae)" Insects 13, no. 9: 787. https://doi.org/10.3390/insects13090787