Robust Nanozyme-Enzyme Nanosheets-Based Lactate Biosensor for Diagnosing Bacterial Infection in Olive Flounder (Paralichthys olivaceus)
<p>(<b>a</b>) Concentrations of lactate as potential biomarker identified through NMR spectroscopy. (<b>b</b>) ROC analysis result for lactate.</p> "> Figure 2
<p>FE-SEM images of (<b>a</b>) bare SPCE, (<b>b</b>) PB/SPCE, (<b>c</b>) P-rGO/SPCE, (<b>d</b>) P-rGO/PB/SPCE, and (<b>e</b>) LOXENs/PB/SPCE.</p> "> Figure 3
<p>(<b>a</b>) CV results of the modified biosensors (bare SPCE, PB/SPCE, P-rGO/PB/SPCE, and LOXENs/PB/SPCE) in 5 mM K<sub>3</sub>[Fe(CN)<sub>6</sub>] prepared in 0.1 M KCl at 50 mV s<sup>−1</sup>. (<b>b</b>) The corresponding <span class="html-italic">i</span><sub>pa</sub> values plot.</p> "> Figure 4
<p>CA current changes of biosensors in 50 mM PBS (pH 7.4) after adding 100 µM lactate.</p> "> Figure 5
<p>(<b>a</b>) Current changes in response to 100 µM lactate for LOXENs/PB/SPCE fabricated using various loadings of LOX. (<b>b</b>) Current changes under various applied potentials for P-rGO/PB/SPCE and LOXENs/PB/SPCE in 50 mM PBS (pH 7.4). (<b>c</b>) Current changes to 100 µM lactate solution prepared in PBS (50 mM, various pH) for LOXENs/PB/SPCE.</p> "> Figure 6
<p>(<b>a</b>) Amperometric results of LOXENs/PB/SPCEs at −0.1 V in 50 mM PBS (pH 7.4) with successive additions of lactate. (<b>b</b>) Fitting the Langmuir model to the current responses (measured 10 s after lactate addition) to a maximum of 1.6 mM lactate. Inset: Calibration curve for lactate concentrations up to 100 µM. (<b>c</b>) Lineweaver–Burk model fitting to the catalytic region using the current responses to lactate additions up to 1.6 mM (n = 4).</p> "> Figure 7
<p>Chronoamperometric results of LOXENs/PB/SPCE in PBS (pH 7.4) at –0.1 V, following successive addition of 100 µM each of lactate, glutamate, myoinositol, glucose, pyruvate, acetoacetate, creatine, uric acid, and ascorbic acid.</p> "> Scheme 1
<p>Design and mechanism of the proposed lactate biosensor.</p> ">
Abstract
:1. Introduction
2. Experimental
2.1. Reagents and Chemicals
2.2. Construction of Lactate Biosensors
2.3. Equipment and Measurements
2.4. Experimental Fish and S. parauberis Challenge
2.5. 1H NMR Analysis
2.6. Preparation of Fish Spleen Extracts for Biosensor and Kit Tests
2.7. Data Analysis
3. Results and Discussion
3.1. Lactate Levels in S. parauberis-Infected Fish Spleen
3.2. Physicochemical Characterization
3.3. Electrochemical Characteristics of Biosensors
3.4. Optimization of Biosensor Performance
3.5. Calibration Plots
3.6. Kinetic Study of LOXENs
3.7. Interference Study
3.8. Reproducibility and Stability
3.9. Real Sample Testing
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kim, D.-H.; Heo, M.-S. Characteristics and diagnostic methods of Streptococcosis causing disease in aquaculture. J. Life Sci. 2018, 28, 1118–1126. [Google Scholar] [CrossRef]
- Baeck, G.W.; Kim, J.H.; Gomez, D.K.; Park, S.C. Isolation and characterization of Streptococcus sp. from diseased flounder (Paralichthys olivaceus) in Jeju Island. J. Vet. Sci. 2006, 7, 53–58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, Y.-K.; Nho, S.-W.; Shin, G.-W.; Park, S.-B.; Jang, H.-B.; Cha, I.-S.; Ha, M.-A.; Kim, Y.-R.; Dalvi, R.S.; Kang, B.-J.; et al. Antibiotic susceptibility and resistance of Streptococcus iniae and Streptococcus parauberis isolated from olive flounder (Paralichthys olivaceus). Vet. Microbiol. 2009, 136, 76–81. [Google Scholar] [CrossRef]
- Nho, S.-W.; Shin, G.-W.; Park, S.-B.; Jang, H.-B.; Cha, I.-S.; Ha, M.-A.; Kim, Y.-R.; Park, Y.-K.; Dalvi, R.S.; Kang, B.-J.; et al. Phenotypic characteristics of Streptococcus iniae and Streptococcus parauberis isolated from olive flounder (Paralichthys olivaceus). FEMS Microbiol. Lett. 2009, 293, 20–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, Y.; Nguyen, T.L.; Kim, A.; Kim, N.; Roh, H.J.; Han, H.-J.; Jung, S.-H.; Cho, M.-Y.; Kang, H.Y.; Kim, D.-H. Complete genome sequence of multiple-antibiotic-resistant Streptococcus parauberis strain SPOF3K, isolated from diseased olive flounder (Paralichthys olivaceus). Genome Announc. 2018, 6, e00248-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nho, S.W.; Hikima, J.; Cha, I.S.; Park, S.B.; Jang, H.B.; del Castillo, C.S.; Kondo, H.; Hirono, I.; Aoki, T.; Jung, T.S. Complete genome sequence and immunoproteomic analyses of the bacterial fish pathogen Streptococcus parauberis. J. Bacteriol. 2011, 193, 3356–3366. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.; Kim, N.; Roh, H.; Kim, A.; Han, H.-J.; Cho, M.; Kim, D.-H. Transcriptome analysis unveils survival strategies of Streptococcus parauberis against fish serum. PLoS ONE 2021, 16, e0252200. [Google Scholar] [CrossRef]
- Lee, A.-R.; Kim, H.; Jeon, K.-Y.; Ko, E.-J.; Kim, A.; Kim, N.; Roh, H.; Lee, Y.; Park, J.; Kim, D.-H.; et al. Differential proteome profile of gill and spleen in three pathogen-infected Paralichthys olivaceus. Genes Genom. 2021, 43, 1–12. [Google Scholar] [CrossRef]
- Mishra, A.; Nam, G.-H.; Gim, J.-A.; Lee, H.-E.; Jo, A.; Kim, H.-S. Current challenges of Streptococcus infection and effective molecular, cellular, and environmental control methods in aquaculture. Mol. Cells 2018, 41, 495. [Google Scholar] [CrossRef]
- Mata, A.I.; Gibello, A.; Casamayor, A.; Blanco, M.M.; Domínguez, L.; Fernández-Garayzábal, J.F. Multiplex PCR assay for detection of bacterial pathogens associated with warm-water streptococcosis in fish. Appl. Environ. Microbiol. 2004, 70, 3183–3187. [Google Scholar] [CrossRef] [Green Version]
- Lau, S.K.; Woo, P.C.; Luk, W.-K.; Fung, A.M.; Hui, W.-T.; Fong, A.H.; Chow, C.-W.; Wong, S.S.; Yuen, K.-Y. Clinical isolates of Streptococcus iniae from Asia are more mucoid and β-hemolytic than those from North America. Diagn. Microbiol. Infect. Dis. 2006, 54, 177–181. [Google Scholar] [CrossRef]
- Facklam, R.; Elliott, J.; Shewmaker, L.; Reingold, A. Identification and characterization of sporadic isolates of Streptococcus iniae isolated from humans. J. Clin. Microbiol. 2005, 43, 933–937. [Google Scholar] [CrossRef] [Green Version]
- Dodson, S.V.; Maurer, J.J.; Shotts, E.B. Biochemical and molecular typing of Streptococcus iniae isolated from fish and human cases. J. Fish Dis. 2001, 22, 331–336. [Google Scholar] [CrossRef]
- Tounta, V.; Liu, Y.; Cheyne, A.; Larrouy-Maumus, G. Metabolomics in infectious diseases and drug discovery. Mol. Omics 2021, 17, 376–393. [Google Scholar] [CrossRef]
- Solanky, K.S.; Burton, I.W.; MacKinnon, S.L.; Walter, J.A.; Dacanay, A. Metabolic changes in Atlantic salmon exposed to Aeromonas salmonicida detected by 1H-nuclear magnetic resonance spectroscopy of plasma. Dis. Aquat. Org. 2005, 65, 107–114. [Google Scholar] [CrossRef]
- Cheng, Z.-X.; Ma, Y.-M.; Li, H.; Peng, X.-X. N-acetylglucosamine enhances survival ability of tilapias infected by Streptococcus iniae. Fish Shellfish Immunol. 2014, 40, 524–530. [Google Scholar] [CrossRef]
- Ma, Y.-M.; Yang, M.-J.; Wang, S.; Li, H.; Peng, X.-X. Liver functional metabolomics discloses an action of L-leucine against Streptococcus iniae infection in tilapias. Fish Shellfish Immunol. 2015, 45, 414–421. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.-L.; Han, Y.; Ren, S.-T.; Ma, Y.-M.; Li, H.; Peng, X.-X. L-proline increases survival of tilapias infected by Streptococcus agalactiae in higher water temperature. Fish Shellfish Immunol. 2015, 44, 33–42. [Google Scholar] [CrossRef]
- Guidi, L.R.; Santos, F.A.; Ribeiro, A.C.S.R.; Fernandes, C.; Silva, L.H.M.; Gloria, M.B.A. A simple, fast and sensitive screening LC-ESI-MS/MS method for antibiotics in fish. Talanta 2017, 163, 85–93. [Google Scholar] [CrossRef] [PubMed]
- Du, H.; Fu, J.; Wang, S.; Liu, H.; Zeng, Y.; Yang, J.; Xiong, S. 1H-NMR metabolomics analysis of nutritional components from two kinds of freshwater fish brain extracts. RSC Adv. 2018, 8, 19470–19478. [Google Scholar] [CrossRef] [Green Version]
- Purohit, B.; Kumar, A.; Mahato, K.; Chandra, P. Novel sensing assembly comprising engineered gold dendrites and MWCNT-AuNPs nanohybrid for acetaminophen detection in human urine. Electroanalysis 2020, 32, 561–570. [Google Scholar] [CrossRef]
- Romero, M.R.; Garay, F.; Baruzzi, A.M. Design and optimization of a lactate amperometric biosensor based on lactate oxidase cross-linked with polymeric matrixes. Sens. Actuators B Chem. 2008, 131, 590–595. [Google Scholar] [CrossRef]
- Mahmudunnabi, R.G.; Farhana, N.F.; Kashaninejad, Z.; Firoz, S.H.; Shim, Y.; Shiddiky, M.J.A. Nanozymes-based electrochemical biosensors for disease biomarker detection. Analyst 2020, 145, 4398–4420. [Google Scholar] [CrossRef]
- Xuan, X.; Pérez-Ràfols, C.; Chen, C.; Cuartero, M.; Crespo, G.A. Lactate Biosensing for Reliable On-Body Sweat Analysis. ACS Sens. 2021, 6, 2763–2771. [Google Scholar] [CrossRef]
- Vokhmyanina, D.V.; Andreeva, K.D.; Komkova, M.A.; Karyakina, E.E.; Karyakin, A.A. ‘Artificial peroxidase’ nanozyme–enzyme based lactate biosensor. Talanta 2020, 208, 120393. [Google Scholar] [CrossRef] [PubMed]
- Ricci, F.; Amine, A.; Palleschi, G.; Moscone, D. Prussian Blue based screen printed biosensors with improved characteristics of long-term lifetime and pH stability. Biosens. Bioelectron. 2003, 18, 165–174. [Google Scholar] [CrossRef] [Green Version]
- Goran, J.M.; Lyon, J.L.; Stevenson, K.J. Amperometric detection of l-lactate using nitrogen-doped carbon nanotubes modified with lactate oxidase. Anal. Chem. 2011, 83, 8123–8129. [Google Scholar] [CrossRef] [PubMed]
- Shimomura, T.; Sumiya, T.; Ono, M.; Ito, T.; Hanaoka, T.A. Amperometric L-lactate biosensor based on screen-printed carbon electrode containing cobalt phthalocyanine, coated with lactate oxidase-mesoporous silica conjugate layer. Anal. Chim. Acta 2012, 714, 114–120. [Google Scholar] [CrossRef]
- Uzunoglu, A.; Ramirez, I.; Andreasen, E.; Stanciu, L.A. Layer by layer construction of ascorbate interference-free amperometric lactate biosensors with lactate oxidase, ascorbate oxidase, and ceria nanoparticles. Microchim. Acta 2016, 183, 1667–1675. [Google Scholar] [CrossRef]
- Cunha-Silva, H.; Arcos-Martinez, M.J. Dual range lactate oxidase-based screen printed amperometric biosensor for analysis of lactate in diversified samples. Talanta 2018, 188, 779–787. [Google Scholar] [CrossRef]
- Rajarathinam, T.; Kwon, M.; Thirumalai, D.; Kim, S.; Lee, S.; Yoon, J.-H.; Paik, H.-j.; Kim, S.; Lee, J.; Ha, H.K.; et al. Polymer-dispersed reduced graphene oxide nanosheets and Prussian blue modified biosensor for amperometric detection of sarcosine. Anal. Chim. Acta 2021, 1175, 338749. [Google Scholar] [CrossRef]
- Wu, H.F.; Southam, A.D.; Hines, A.; Viant, M.R. High-throughput tissue extraction protocol for NMR- and MS-based metabolomics. Anal. Biochem. 2008, 372, 204–212. [Google Scholar] [CrossRef] [PubMed]
- Petropoulos, K.; Piermarini, S.; Bernardini, S.; Palleschi, G.; Moscone, D. Development of a disposable biosensor for lactate monitoring in saliva. Sens. Actuators B Chem. 2016, 237, 8–15. [Google Scholar] [CrossRef]
- Cunha-Silva, H.; Pires, F.; Dias-Cabral, A.C.; Arcos-Martinez, M.J. Inhibited enzymatic reaction of crosslinked lactate oxidase through a pH-dependent mechanism. Colloids Surf. B 2019, 184, 110490. [Google Scholar] [CrossRef]
- Mocak, J.; Bond, A.M.; Mitchell, S.; Scollary, G. A statistical overview of standard (IUPAC and ACS) and new procedures for determining the limits of detection and quantification: Application to voltammetric and stripping techniques (technical report). Pure Appl. Chem. 1997, 69, 297–328. [Google Scholar] [CrossRef]
- Lamas-Ardisana, P.J.; Loaiza, O.A.; Anorga, L.; Jubete, E.; Borghei, M.; Ruiz, V.; Ochoteco, E.; Cabanero, G.; Grande, H.J. Disposable amperometric biosensor based on lactate oxidase immobilised on platinum nanoparticle-decorated carbon nanofiber and poly(diallyldimethylammonium chloride) films. Biosens. Bioelectron. 2014, 56, 345–351. [Google Scholar] [CrossRef] [PubMed]
- Patel, N.G.; Erlenkötter, A.; Cammann, K.; Chemnitius, G.-C. Fabrication and characterization of disposable type lactate oxidase sensors for dairy products and clinical analysis. Sens. Actuators B Chem. 2000, 67, 134–141. [Google Scholar] [CrossRef]
- Ghamouss, F.; Ledru, S.; Ruille, N.; Lantier, F.; Boujtita, M. Bulk-modified modified screen-printing carbon electrodes with both lactate oxidase (LOD) and horseradish peroxide (HRP) for the determination of L-lactate in flow injection analysis mode. Anal. Chim. Acta 2006, 570, 158–164. [Google Scholar] [CrossRef]
- Suman, S.; Singhal, R.; Sharma, A.L.; Malthotra, B.D.; Pundir, C.S. Development of a lactate biosensor based on conducting copolymer bound lactate oxidase. Sens. Actuators B 2005, 107, 768–772. [Google Scholar] [CrossRef]
- Gavalas, V.G.; Chaniotakis, N.A. Polyelectrolyte stabilized oxidase based biosensors: Effect of diethylaminoethyl-dextran on the stabilization of glucose and lactate oxidases into porous conductive carbon. Anal. Chim. Acta 2000, 404, 67–73. [Google Scholar] [CrossRef]
- Wang, R.; Zhai, Q.; An, T.; Gong, S.; Cheng, W. Stretchable gold fiber-based wearable textile electrochemical biosensor for lactate monitoring in sweat. Talanta 2021, 222, 121484. [Google Scholar] [CrossRef] [PubMed]
- Jia, W.; Bandodkar, A.J.; Valdes-Ramirez, G.; Windmiller, J.R.; Yang, Z.; Ramirez, J.; Chan, G.; Wang, J. Electrochemical tattoo biosensors for real-time noninvasive lactate monitoring in human perspiration. Anal. Chem. 2013, 85, 6553–6560. [Google Scholar] [CrossRef]
- Vinoth, R.; Nakagawa, T.; Mathiyarasu, J.; Mohan, A.M.V. Fully Printed Wearable Microfluidic Devices for High-Throughput Sweat Sampling and Multiplexed Electrochemical Analysis. ACS Sens. 2021, 6, 1174–1186. [Google Scholar] [CrossRef] [PubMed]
- Takeda, K.; Kusuoka, R.; Inukai, M.; Igarashi, K.; Ohno, H.; Nakamura, N. An amperometric biosensor of L-fucose in urine for the first screening test of cancer. Biosens. Bioelectron. 2021, 174, 112831. [Google Scholar] [CrossRef] [PubMed]
Metabolite | Concentration (mM, Mean ± SD) | p Value Adjusted by FDR | ROC Analysis | |||
---|---|---|---|---|---|---|
Control | S. parauberis | AUC (95% CI) | Sensitivity | Specificity | ||
Lactate | 0.014 ± 0.006 | 0.035 ± 0.008 | 1.59 × 10−4 | 0.978 (0.877−1) | 90% | 100% |
Biosensors | Operating Potential vs. Ag/AgCl (V) | Linear Range (μM) | LOD (µM) | Response Time (s) | Sensitivity (µA mM−1 cm−2) | References |
---|---|---|---|---|---|---|
LOX/PtNp–CNF–PDDA/SPCEs | 0.50 | 25–1500 | - | 11 | 36.8 | [36] |
LOX–FSM8.0/Naf/CoPC–SPCEs | 0.45 | 18.3–1500 | 18.3 | 90 | 4.54 | [28] |
LOX/Pt/SPCE | 0.60 | 0–1000 | 0.5 | 50 | 0.448 | [37] |
HRP/LOX/SPCE | –0.10 | 10–180 | - | 0.00084 | [38] | |
LOX/albumin–mucin hydrogel/Pt disc | 0.65 | 0.70–1500 | 0.7 | 90 | 0.79 | [22] |
LOX/poly (An-co-FAn) film | 0.40 | 100–5500 | 100 | 50 | 1.18 | [39] |
LOX/Polyelectrolyte/Porous carbon electrode | 0.60 | 75–1000 | 10 | 20–60 | 15.59 | [40] |
PB/LOx/chitosan coated gold fiber | −0.10 | 0–30,000 | 137 | - | 19.13 | [41] |
LOx/TTF/MWCNT/Printed tattoo electrode | 0.050 | 0–20,000 | - | continuous 30 min | 10.31 | [42] |
LOX–chit–CNT/TTF–CNT/Au | −0.17 | 0–24000 | - | - | 68 | [43] |
LOXENs/PB/SPCE | −0.10 | 10–100 | 3.1 | 10 | 15.9 | This work |
Methods | Samples | Added (µM) | Found ± SD (µM) | Recovery (%) | RSD (%) |
---|---|---|---|---|---|
Proposed biosensor | Control group | 0 | 8.40 ± 2.4 | - | 28.6 |
50 | 116.3 ± 6.0 | 199.2 | 5.1 | ||
100 | 181.6 ± 5.2 | 167.6 | 2.8 | ||
150 | 229.4 ± 7.2 | 144.9 | 3.1 | ||
S. parauberis infected group | 0 | 29.9 ± 8.2 | - | 27.4 | |
50 | 129.3 ± 2.7 | 161.8 | 2.1 | ||
100 | 237.4 ± 2.7 | 182.7 | 1.1 | ||
150 | 303.0 ± 2.7 | 168.4 | 0.9 | ||
Colorimetric assay kit | Control | 10.2 | |||
S. parauberis infected group | 27.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rajarathinam, T.; Kim, S.; Thirumalai, D.; Lee, S.; Kwon, M.; Paik, H.-j.; Kim, S.; Chang, S.-C. Robust Nanozyme-Enzyme Nanosheets-Based Lactate Biosensor for Diagnosing Bacterial Infection in Olive Flounder (Paralichthys olivaceus). Biosensors 2021, 11, 439. https://doi.org/10.3390/bios11110439
Rajarathinam T, Kim S, Thirumalai D, Lee S, Kwon M, Paik H-j, Kim S, Chang S-C. Robust Nanozyme-Enzyme Nanosheets-Based Lactate Biosensor for Diagnosing Bacterial Infection in Olive Flounder (Paralichthys olivaceus). Biosensors. 2021; 11(11):439. https://doi.org/10.3390/bios11110439
Chicago/Turabian StyleRajarathinam, Thenmozhi, Seonghye Kim, Dinakaran Thirumalai, Sujin Lee, Minho Kwon, Hyun-jong Paik, Suhkmann Kim, and Seung-Cheol Chang. 2021. "Robust Nanozyme-Enzyme Nanosheets-Based Lactate Biosensor for Diagnosing Bacterial Infection in Olive Flounder (Paralichthys olivaceus)" Biosensors 11, no. 11: 439. https://doi.org/10.3390/bios11110439