
Mining Software Repositories for Social Norms
Hoa Khanh Dam

University of Wollongong
Australia

hoa@uow.edu.au

Bastin Tony Roy Savarimuthu
University of Otago

New Zealand
tony.savarimuthu@otago.ac.nz

Daniel Avery
University of Wollongong

Australia
davery@uow.edu.au

Aditya Ghose
University of Wollongong

Australia
aditya@uow.edu.au

Abstract—Social norms facilitate coordination and cooperation
among individuals, thus enable smoother functioning of social
groups such as the highly distributed and diverse open source
software development (OSSD) communities. In these commu-
nities, norms are mostly implicit and hidden in huge records
of human-interaction information such as emails, discussions
threads, bug reports, commit messages and even source code. This
paper aims to introduce a new line of research on extracting social
norms from the rich data available in software repositories. Initial
results include a study of coding convention violations in JEdit,
ArgoUML and Glassfish projects. It also presents a new life-
cycle model for norms in OSSD communities and demonstrates
how a number of norms extracted from the Python development
community follow this life-cycle model.

I. INTRODUCTION

Social norms plays an important role in governing individ-
uals’ behavior in group settings (e.g. societies and communi-
ties), and regulating the interactions between those individuals.
Norms can emerge formally where behavioral expectations are
explicitly described and implemented by groups, e.g. over-
speeding prohibited by laws. Norms can also arise informally,
representing generally accepted and universally sanctioned
routines in our daily life, e.g. people obliged to queue at a
counter. Both formal and informal norms are crucial to the
smooth functioning of social groups. Norms are dynamic,
evolve or devolve over time, can spread from one community
to another, but can also vary between communities. Social
norms have long been an important research topic in sociology
(e.g. [1]), psychology (e.g. [2]), economics (e.g. [3]) and
recently computer science (e.g. in the area of multi-agent
systems [4] or mining social media [5]).

There are, however, very little work on norms in the fast
emerging, highly diversified open source software develop-
ment (OSSD) communities. Large OSSD communities like
Linux and Android OS have hundreds of contributors and
millions of users around the world. OSSD communities seem
to be largely governed by norms, and in many cases emerged
without an initial formal organizational structure with regula-
tions (i.e. norms and policies) explicitly stated and enforced.
Hence, an in-depth study on norms and extracting them to
make them explicit to stakeholders (norm mining) would
significantly benefit the software engineering community in
general and the OSSD communities in particular.

An important research is to study how the functioning
of OSSD communities is shaped by norms, in particular
the decision-making process about how rules are initially

suggested, supported and ratified to become a policy (i.e. the
normative process). For example, members of a newly formed
open source project have to decide the policy governing who
is authorized to commit code to the system. The policy may
be initially suggested by some members, which upon gaining
support, may be codified. These decision making processes
are not captured formally in many open source projects.
Understanding such underlying normative processes is very
important since the construction of (open source) software is
a complex group activity involving highly autonomous, vol-
unteering contributors who have different levels of experience
and are from different background, cultures and geographical
regions.

A huge amount of human-interaction (e.g. between devel-
opers, users, admins, and other contributors) information on
software development have been recorded and stored in soft-
ware repositories such as mailing lists, and discussion threads,
bug reports, source code, and commit messages (e.g. in 2012
Mozilla Firefox had 800,000 bug reports [6]). Hidden in such
rich data are norms which were implicitly created, discussed
and enforced. This offers an excellent opportunity for doing
an in-depth study on norms in OSSD communities. Although
many research (e.g. [7]) in mining software repositories have
leveraged those kinds of data, to the best of our knowledge
none of those work dedicated to norm mining – extracting
norms and making them available to community members.

Our current research aims to fill that gap by addressing the
following topics:

1) Developing a norm life-cycle model that describes var-
ious phases a norm goes through, from its formation
to enforcement, in OSSD communities. This life-cycle
model is then used to extract norms, particularly those
that emerge (without planning or design) from individu-
als’ interactions, and analyze the conditions under which
such norms come into existence.

2) Understanding how norms evolve, vary and spread from
one OSSD community to another. An interesting focus
is identifying the difference in the type of norms and
the nature of normative processes in successful and
failed software projects, the impact of norm compliance
on the success of projects, and the impact of different
stakeholders’ roles in the norm life-cycle.

3) Developing norm “databases” for OSSD communities
such that the extracted norms are explicitly recorded,
updated and reasoned about (e.g. checking for inconsis-



tencies between norms). This provides a basis for more
advanced support such as making (new) members be
aware of norms related to the context of their work and
contribution.

The remaining parts of the paper discuss some initial results
of our work towards the above research directions.

II. NORMS AND CONVENTIONS IN SOFTWARE
DEVELOPMENT COMMUNITIES

Convention is a common expectation amongst (most) others
that an agent should adopt a particular action or behaviour
(e.g. the convention in ancient Rome was to drive on the left).
Coding standards of an OSSD community is an example of
conventions. The specifications of these conventions may be
explicitly available from the project websites or can be inferred
implicitly. For example, many open source Java projects (e.g.
JEdit, ArgoUML and Glassfish) assume that their developers
should use the Java coding conventions. Figure 1 shows
15 examples of Java coding conventions which are divided
into five groups: extensibility, import, length, redundancy and
programming pitfalls. Note that some of these are conventions
that were originally specified in the Java coding conventions
(e.g. the length of a line in Java should be less than 80 – these
are marked with *), while others have informally emerged over
time as good practices, but have not been updated in the Java
convention specification (e.g. avoiding star imports).

Convention 
category

Conventions 
(As encoded in Checkstyle 5.5)

Description/Default Value (in italics)

Extensibility AvoidInlineConditionalsCheck
Inline conditionals (e.g. the use of ternary operator in Java) should be 
avoided.

DesignForExtensionCheck Non‐private, non‐static methods in non‐final classes (or classes that do not 
only have private constructors) must either be  abstract or final or have an 
empty implementation. 

SimplifyBooleanExpressionCheck* Overly complicated Boolean expressions should be simplified. 
Programming 

pitfalls HiddenFieldCheck
A local variable or a parameter should not shadow a field that is defined in 
the same class.

EqualsHashCodeCheck Classes that override equals() should also override hashCode().

Import
AvoidStarImportCheck Generic imports with * should be avoided.
IllegalImportCheck Imports from a set of illegal packages should be avoided

RedundantImportCheck Imports that are redundant should be avoided. 
UnusedImportsCheck Unused import statements should be removed. 

Length

FileLengthCheck* The maximum file length  is 2000 lines 

LineLengthCheck* The maximum line length is 80 characters
MethodLengthCheck The maximum method length is 150 lines
MethodLimitCheck The maximum number of methods in a class is 30 methods

ParameterNumberCheck The maximum number of parameters that a method or constructor has is 7 
parameters

Redundancy RedundantThrowsCheck
Redundant exceptions declared in throws clause such as duplicates, 
unchecked exceptions or subclasses of another declared exception should
be avoided. 

Fig. 1. Examples of Java coding conventions

Coding conventions were however not strictly enforced in
a range of OSSD projects. We have performed an empirical
study using CheckStyle1, a coding standard analyzer for Java,
to analyze how those 15 coding conventions in Figure 1
were honoured in three well-known Java-based open source
projects: JEdit, ArgoUML and Glassfish. Figure 2 presents
our findings, which show a substantial number of instances
(16,172 instances in JEdit, 147,268 in Glassfish, and 10,004
in ArgoUML) where the 15 Java coding conventions were
violated. Some of those conventions (e.g. DesignForExten-
sionCheck) were frequently violated while there are fewer in-
stances of violation for others (e.g. IllegalImportCheck), which

1http://checkstyle.sourceforge.net

may reflect the degree of enforcement from the community
towards each of those conventions.

JEdit Glassfish ArgoUML
Extensibility
AvoidInlineConditionalsCheck 528 2351 226
DesignForExtensionCheck 2850 30723 5320
SimplifyBooleanExpressionCheck 11 427 5

Import
AvoidStarImportCheck 716 4252 4
IllegalImportCheck 0 38 0
RedundantImportCheck 22 232 1
UnusedImportsCheck 43 2710 88

Length
FileLengthCheck 26 143 21
LineLengthCheck 9178 84960 2121
MethodLengthCheck 38 188 23
MethodLimitCheck 1022 8256 1878
ParameterNumberCheck 22 125 11

Redundant
RedundantThrowsCheck 386 6466 148

Programming pitfalls
HiddenFieldCheck 1317 6387 158
EqualsHashCodeCheck 13 10 0

Grand Total 16172 147268 10004

Fig. 2. The number of coding convention violations in some OSSD projects

As conventions gain force, the violations of conventions
may be sanctioned at which point a social norm comes into
existence. For example, if driving on the right is sanctioned,
the left-hand driving becomes a norm. A community is said
to have a particular norm, if a behaviour is expected of the
individual members of the community and there are approvals
and disapprovals for norm abidance and violation respectively.
Norms in OSSD communities may generally be classified into
three categories: prohibition, obligation and permission (as in
deontic norms [8]). Prohibition norms prohibit members of a
project group from performing certain actions. For example,
the members of an open source project may be prohibited
to check-in code that does not compile, and they may be
prohibited to check-in a revised file without providing a com-
ment describing the change that has been made. Obligation
norms, on the other hand, describe activities that are expected
to be performed by the members of a project community. For
example, the members may be expected to follow the coding
convention that has been agreed upon. Failure to adhere to this
convention may result in the code not being accepted by the
repository (e.g. based on automatic checking) or a ticket may
be issued by quality assurance personnel. Permission norms
describe the permissions provided to the members (e.g. actions
they can perform). For example, an user playing the role of
the project manager is permitted to create code branches or
forks.

III. NORM LIFE-CYCLE IN OSSD COMMUNITIES

Understanding how norms are created, codified, monitored
and enforced is crucial to the extraction of norms in OSSD



communities. We propose the following four-stage life-cycle
model of norms in OSSD communities. An instance of the
four-stage model is shown in Figure 3.

Phase 1 – Convention formation: At this initial stage, the
members of the community discuss what the conventions of
the software project should be. Conventions not only concern
coding conventions but also could govern other aspects of the
community such as the deadline for attending to a reported
issue and the number of members that should verify a supplied
patch before it can be accepted. The proposal for conventions
could be put forward by leaders of the project (e.g. Linus
Torvalds in the Linux project), or they could come from
the other members. The agreement on the conventions are
based on consensus for those issues that are known a-priori.
However, conventions can also be emergent. Once the project
is well underway, there could be a convention that all version
changes should be accompanied with a non-trivial explanation
or comment on the change that was made. Thus, the pool of
conventions is amenable to change.

Phase 2 – Convention codification: Once the conventions
have been agreed upon, they might be codified into written
rules. There are several examples of codified conventions
in several open source communities. For example, the open
source Apache project2 and the Android development com-
munity3 provide guidelines on conventions including coding
conventions. Once the convention has been codified, that forms
the basis of expectations, and hence norms. It is expected that
the members of the project community adhere to these norms.

It should be noted that not all the conventions might be
codified. In many communities, the conventions are assumed
to be common knowledge and they exist only in the minds
of the individuals (usually in the tacit form). For example,
in the Java-based project communities there are uncodified
conventions, such as not using star imports or overriding the
hashCode method whenever overriding the equals method,
that exist in various forums outside the community pages
associated with a OSS project (blogs, discussion boards, etc.).
However, there are issues with these uncodified (informal)
conventions. It is difficult to assess how often violations are
sanctioned (i.e. the salience of the norm) and there are also
ambiguities surrounding whether the project development in-
frastructure (e.g. project submission system) can automatically
check for the violations of the conventions and potentially
sanction violators.

Phase 3 – Norms monitoring: Upon the codificiation of
these norms, projects choose to monitor norms either through
centralized or distributed mechanisms. Some projects have
integrated convention checking tools such as CheckStyle4

and StyleCop5 in their project submission systems and any
violations of norms are by default prohibited. Another option
is for projects to facilitate a distributed monitioring mecha-

2http://portals.apache.org/development/code-standards.html
3https://sites.google.com/a/android.com/opensource/submit-patches/code-

style-guide
4http://checkstyle.sourceforge.net/
5http://archive.msdn.microsoft.com/sourceanalysis

nism which is primarily manual where individual contributors
report on any violations. Though centralized monitors facilitate
tighter control, they can be used only for simple “static”
checks. More involved inspections are possible when humans
are involved in the loop.

Phase 4 – Norm enforcement: While using one of the
convention checking tools, the enforcement could be instanta-
neous. However, in a distributed approach to sanctioning, there
could be several types of penalties. For example, a ticket could
be issued for breaking a norm. There could be email exchanges
between individuals discussing the importance of honouring
conventions. Also, there might be invisible penalties for the
violator such as the decrease of reputation and trust. Based on
the discussions generated on a particular norm, there may be
re-evaluations leading to the adjustment of norms. Thus, the
process enables a feedback loop to the norm formation phase.

Fig. 3. Norm life-cycle in the Python project community

IV. A CASE STUDY OF NORMS IN THE PYTHON PROJECT

The norm life-cycle discussed above was used as a basis
for our norm mining in the well-known Python6 project
community. Python contributors use mailing lists to propose,
discuss and select norms for the community. We mined the
email messages during two different phases of the project: (1)
early 2000s when the norms of collaboration using versioning
systems were first used and several norms were proposed; and
(2) 2011-2013 where some changes to norms were proposed.
The first phase was manually done and the second phase
was semi-automated by a norm miner tool. Figure 3 shows
a lifecyle of norms in the Python project community. We
found that any new proposal or change proposed to the Python
language is initiated by a member (or members) of the core
member group (who has more privilege in code submission)
or the non-core member group. The initiation could happen
over meetings (e.g. physical meetings or in a teleconference
or using an online messaging service) or other channels (e.g.
emails). If the proposal is from a core-member group, the
proposal goes for discussion amongst the non-core members.
The proposal may be subject to some modifications based on
ensuing discussions and would be accepted for implementa-
tion.

6http://www.python.org



ID Norm description Discussion Agreement Enforcement Norm type
1 Core developers can submit small fixes without going Medium Agreement Optional Permission

through the mandatory code review stage
2 Security issues and fixes should not be discussed in Medium Agreement Mandatory Prohibition

public channels until a fix has been announced
on an official channel

3 The Python mentor program should be a gated community, Large Agreement Mandatory Obligation
requiring registration and approval by an admin.

4 Documenting public API’s are encouraged but not mandatory Medium Vote Optional Permission
5 The API Code should be frozen after Python 3.2 release Small Declare Mandatory Obligation

Fig. 4. Example of norms mined from Python development mailing list during 2011–2013

However, if a non-core member initiates a proposal, then a
voting is conducted. The voting process used is documented
as a separate process7. The proposal may or may not be
accepted (by the core member group and the non-core member
group). This is different from proposals that come from the
core member group which always tend to get accepted. When
the proposal from non-core member group is accepted it might
go for another round of discussions. The announcement of
acceptance or rejection is made by one of the members of the
core member group. Once the proposal is accepted, it can then
be monitored and enforced. Monitoring can be mandatory or
optional. Enforcement can be automatic (e.g. creating a bug
entry when an automatic build process fails) or can be manual
(i.e. a developer sanctions another in an email).

We have developed a norm miner tool (leveraging data
mining and natural language process techniques) and used it to
further mine 31,574 email messages from Python development
mailing list from 2011–2013. Approximately 15% of those
emails concerned with norms creation (as either voting or
agreement messages) and there were 3,751 norms extracted
from them. Due to space limitations, we present only 5
representatives in Figure 4. We found that the overwhelming
majority of norms were initiated by core members. This may
suggest that norm emergence in Python community occurred
centrally and were initiated by a relatively small part of the
community. The majority of discussions ended democratically
(by voting or agreement). Norms that were declared (such
norm #5 in Figure 4) often had very little discussion, sug-
gesting that these norms were not resisted by the community.
Some of the norms (e.g. norms #2, #3, and #5) are enforced
mandatorily which could suggest that these norms were a
response to critical issues. Obligation norms (e.g. norms #3
and #4) were dominant in Python, which may imply that
the community is more concerned about discussing what they
should be doing as opposed to what they should not be doing.

V. CONCLUSIONS AND FUTURE WORK

Social norms are critical to the functioning of distributed
and diverse social groups like OSSD communities. This paper
has outlined a number research directions in the study of

7Refer to Python Enhancement Proposal 10 (PEP 10) -
http://www.python.org/dev/peps/pep-0010

norms in OSSD communities, especially leveraging the huge
amounts of human-interaction data generated from the soft-
ware development activities. Our empirical study on the degree
of coding convention compliance in a number of large open
source software projects highlighted the differences between
conventions and norms. We have also proposed a life-cycle
model of norms in OSSD communities, and demonstrated how
extracted norms from the Python project community follow
this life-cycle.

Our initial work here has opened up the possibility of
answering a number of norm-related questions which have
seldom been answered in the context of open source software
development. Future work involves addressing the remaining
topics we raised earlier in the paper, particularly studying
the impact of norms on the success/failure of a software
project and building an explicit norm “database”. These topics
would interest both social researchers and computer scientists.
We believe a synergy between the two is required for ad-
dressing these broader questions. Additionally, the knowledge
obtained through answering these questions will advance our
understanding of human interaction norms in the open source
domain.

REFERENCES

[1] B. Herrmann, C. Thöni, and S. Gächter, “Antisocial punishment across
societies,” Science, vol. 319, no. 5868, pp. 1362–1367, 2008.

[2] R. B. Cialdini, “Descriptive social norms as underappreciated sources of
social control,” Psychometrika, vol. 72, no. 2, pp. 263–268, 2007.

[3] J. Elster, “Social norms and economic theory,” The Journal of Economic
Perspectives, vol. 3, no. 4, pp. 99–117, 1989.

[4] B. T. R. Savarimuthu and S. Cranefield, “Norm creation, spreading and
emergence: A survey of simulation models of norms in multi-agent
systems,” Multiagent and Grid Systems, vol. 7, no. 1, pp. 21–54, 2011.

[5] F. Kooti, H. Yang, M. Cha, P. K. Gummadi, and W. A. Mason, “The
emergence of conventions in online social networks,” in Proceedings of
the Sixth International Conference on Weblogs and Social Media, Dublin,
Ireland, June 4-7, 2012, 2012.

[6] T. Menzies and T. Zimmermann, “Software analytics: So what?” Software,
IEEE, vol. 30, no. 4, pp. 31–37, 2013.

[7] MSR 2014: Proceedings of the 11th Working Conference on Mining
Software Repositories. New York, NY, USA: ACM, 2014.

[8] R. J. Wieringa and J.-J. C. Meyer, “Applications of deontic logic in
computer science: a concise overview,” in Deontic logic in computer
science: Normative system specification. New York, USA: John Wiley
& Sons, Inc., 1994, pp. 17–40.


