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Abstract:
Grasping has recently seen a quanta of progress through the combination of model-
based methods with deep learning to achieve 95%+ success. However, general-
ization is achieved through very large datasets and these methods cannot preserve
grasp semantics across object instances. We introduce a method for generating
grasps for novel objects through the transfer of grasps from similar objects, which
can generalize from a small amount of data, does not impose constraints on the
generated grasps, and preserves semantically significant grasps. This approach
builds on the data-driven grasp generation of Dex-Net 1.0 and the deformation-
based 3D reconstruction of DeformNet, by using a 2D image to find an appropriate
3D template, deforming the 3D template along with its known grasps, and using
the deformed grasps on the novel object. We train the model on a set of shapes
from ShapeNet annotated with grasps, and evaluate the deformed grasps using
analytic grasp quality metrics. Our preliminary results suggest that deformation
preserves usable grasps as well as semantically relevant grasp locations.
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1 Introduction
Despite it being among the most fundamental and important tasks in robotics, robust object grasping
is still difficult due to imprecision in sensing, actuation, and control. Although it is possible to plan
grasps using physics-based analytic methods [1], such approaches usually depend on having an
external perception system which makes the pipeline both more complex and brittle. Data-driven
methods such as Dexnet 1.0 demonstrated that it is possible to improve grasp robustness by leveraging
a large dataset of objects with known grasps [2]. But the method still required a pre-processing
pipeline to handle perception. This is adequately addressed in an improved Dexnet 2.0 [3] that
performs grasp generation end-to-end from depth image input to grasp evaluation. While impressive,
this requires a large dataset and was designed specifically to generate parallel-jaw grasps of an object
from a top view.

To generalize this method to novel views and preserve grasp semantics – such as grasping a cup
by the handle for manipulation – a full retraining of the models would be required. An alternative
approach for robust grasping is to first build up a dataset of objects with known grasps, and then
generate new robust grasps for a novel object by querying this dataset for relevant objects and doing
grasp transfer to adapt the grasps in the dataset to this novel object. This has the benefit of providing
robust grasps without expensive physics-based grasp planning, potentially requiring less labeled data
or robot experiments, and of preserving semantically meaningful grasps. Other methods have used
labelling of parts in meshes and shape segmentation and alignment for transfer [4]. We show that we
can perform this transfer through end-to-end image based shape deformation that also outputs point
wise correspondence, hence obviating the need for shape segmentation and alignment.

The primary contribution of this paper is a novel method for grasp transfer between similar objects
using 3D shape deformation, which is based on combining a large 3D object dataset with known
grasps generated using analytic methods and a deep-learning model that can deform a 3D shape from
this dataset guided by a 2D image of a novel object not in the dataset.

To generate a dataset of objects with known grasps, we perform antipodal grasp sampling with robust
force-closure evaluation on a set of graspable shapes as in Dex-Net 1.0[2]. After training Deformnet
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Figure 1: A demonstrative example of our method, showing (a) Input image to DeformNet for the test object, (b)
Similar shape template retrieved from the database along with it pre-computed grasps ordered by analytic metric,
(c) the deformed grasps overlaid on the known true shape of the test object to be grasped, and (d) the same shape
overlaid with the grasps that were generated for it using an analytic method assuming the test object model was
known. Although the deformed shape is not shown, it is clear from (c) that the majority of the grasps correctly
deform onto the target object and only a subset at the top are unusable.

on this set of shapes exclusively for the task of shape deformation, we can generate grasps for novel
objects by using a single RGB image input to first perform shape retrieval from the dataset using
a learned image-to-shape embedding, and then deforming the retrieved object as well its known
grasps using the FFD layer in an encoder-decoder style network architecture. Generating grasps
through deformation based transfer allows generalization across a large variety of objects using only
a small set of objects with pre-computed grasps. We provide preliminary results from on small subset
of the Shapenet dataset, and show that deformation preserves grasp semantics without significant
degradation in quality.

2 Related Work

Grasp Planning Grasp Planning is posed in terms of finding gripper configurations that maximize a
success metric for a certain object. Methods for this problem are categorized as either analytic, if
they model the physics of the grasp to estimate performance [1], or as empirical, if they are based on
learning statistical models from datasets collected through human annotation, robot experiments, or
simulation [5].

Analytic methods typically assume the 3D shape and pose of the object can be known exactly or
with known uncertainty, and solve the problem of finding appropriate contact points for a gripper to
restrict an object’s motion and resist external wrenches[1]. For executing grasps with a robot, such
analytic methods are typically used to create a database of 3D objects with known grasps. Point
cloud data can then be used to query for relevant objects from the database and for finding the pose
of object to grasp, and the highest quality retrieved grasp is executed[2]. Empirical methods typically
involve machine learning models that output a grasp quality or directly generate appropriate grasps
given an input of 2D or 3D data about a target object. Recently many deep learning approaches have
been proposed for both grasp evaluation [3, 6] with separate grasp sampling and for models that
directly generate grasps [7, 8]. With the exception of [7], all these methods are based on evaluating
parallel-jaw grasps represented as rectangles on a 2D image and are limited in the range of grasps
they allow as a result.

Grasp Transfer Aside from training learned models, datasets can be leveraged for grasp transfer by
mapping grasps between between similar objects [9, 10], between different grippers [11], and from
human-demonstrated grasps to robot grippers [12]. Our method most closely relates to that of Grasp
Moduli Spaces [9], which also proposes to transfer grasps through joint shape and grasp deformation,
but their deformation method is not based on deep learning and requires a dense point cloud of the
full shape to be available for grasping of novel objects. The approach in [10] is also similar to ours in
that it uses a similarity metric to retrieve similar grasps from a dataset given 2D images of the target
grasps, but is less robust due to only rotating and translating the template grasps and not allowing for
full deformation as in our model.

3D Shape Inference Our approach to grasp transfer is unique in that it builds on the recent devel-
opment of deep learning methods for inferring the 3D shapes of objects. Prior work has explored
3D reconstruction with generative models that output the 3D reconstruction in one of two formats -
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occupancy grid (i.e. voxel) [13, 14] and point clouds[15]. Shape retrieval through joint embedding of
2D images and 3D shapes has also been explored as a means for 3D shape inference [16]. Deformnet,
the model we use for grasp deformation, finds a balance between the flexibility of a generative
approach and the output quality of a database-focused approach. Specifically, the network learns to
generate parameters for free-form deformation (FFD) [17]. Because the FFD is not constrained to
just deform the shape but also any points on or near the shape, we can easily extend its application
beyond shape reconstruction to grasp transfer.

3 Method

3.1 Dataset Generation

Our method relies on having a dataset of objects with known 3D models, so that for each object
we can derive its voxelized and point cloud representations, render it from multiple perspectives,
and generate usable grasps for it using analytic grasp. We perform voxelization, point sampling,
and rendering many views of each object as in the prior DeformNet work. We further enriched by
performing grasp generation on the chosen objects as in DexNet 1.0 [2]. This is accomplished by
antipodal sampling: we sample a random point on the object surface, form a grasp axis through the
point along a randomly sampled direction within the friction cone of the object, calculate the other
contact point of the grasp, and keep the grasp if it is in the friction cone. We also store a measure
of grasp quality using the Robust Force Closure metric, which has been shown to provide a good
measure of the resistance of a given grasp to a wrench while being computationally tractable [18].

3.2 Shape Template Retrieval
To make use of the high-quality 3D CAD models in the existing database, the first step is to retrieve
shape templates that have a similar topology to the object in a query image. For this, we use metric
learning to learn an embedding that preserves topological similarity between shapes. For the metric,
we optimize a loss function over a 2D CNN which forms a smoothed triplet loss [19] over our
examples. We define the similarity to be the inverse of the distance in the metric space and retrieve
K-nearest neighbors from a query image and randomly pick one in K shapes as the input shape
template in the following network for deformation, DEFORMNET. Note that the shape template from
database is annotated with grasps. See supplementary material for more details.

3.3 DeformNet
Given a reference image and a shape template that closely matches the input image from the shape
template retrieval stage (Sec. 3.2), we want to generate the parameters of a deformation, specifically
free-form deformation (FFD) [17], which transforms the shape template into the shape in the reference
image. Conventionally, voxel representation is the preferred way to learn 3D reconstruction in learning
based reconstruction due to its regularity in space. However, such representation lose details in a 3D
shape during quantization which lead to suboptimal reconstruction. Instead of using occupancy grid
reconstruction as final output, we benefit from both the voxel and point cloud representation: the
network is learned to generate a vector field in grid which is used as the offset for control points in
free-form deformation, and this vector field will further determine the deformation of shape template
in the form of point cloud. Interpreted as pairs of points, the annotated grasps on the shape template
are naturally transformed with shape deformation, generating the output grasps for evaluation. See
supplementary material for details including figure for demonstration.

3.4 Loss Function
To make the DEFORMNET end-to-end trainable, we need to define a loss function that optimizes the
target task: deforming a shape template to match a target shape. The loss function should measure
dissimilarity between the deformed and template shape. To do this, we sample points on the surface
of a shape and use the set of points (point cloud) as a surrogate for a shape. Point clouds are easy to
manipulate due to their simplicity and efficiency, and we follow [15] by using the Chamfer distance
(CD) function on point clouds as the loss function to be minimized. See supplementary material for
details on point cloud distance measurement. Besides, we use small regularization in addition to the
distance function λ

∑N3

i=1 ‖vi‖1 to force the network to avoid unnecessary drastic deformation.
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4 Evaluation
4.1 Grasp Quality
We present preliminary evaluation of our method on one object category from Shapenet (“Remotes"),
by generating deformed grasps for a set of ’remote’ objects and computing the Robust Force Closure
metric with the known true shape of each object. Then on we derive three metrics to quantify the
performance of our method from different perspectives as seen in Table 1.

We include the top 50 average as a global overview for the effect of deformation on grasps in general,
the top 5 average since it is most realistically significant for robot performance to have only several
grasps to try, and the top grasp average since it captures the variance involved in individual grasps
under a deformation and also the best-case grasping behavior. As expected, the deformed grasps are
not as good as grasps generated with the analytic method on the ground truth shapes in all of these
measures. However, the grasp generation method requires the mesh of the object that may not always
be available when grasping in the wild. Contrarily, our method only requires a library of templates
and an image of the object. With that context, our method achieves a reasonable retention of grasp
quality even after deforming the original mesh.

Source Top 50 Top 5 Best Grasp
Generated 0.247 0.511 0.59

Deformed (Ours) 0.131 0.328 0.40
Table 1: Quantitative results comparing grasps generated using the known true shape of an object and through
deformation using our approach. Deformed grasps get worse evaluation across the board, but notably the best
deformed grasps are proportionally closer to non-deformed grasps than the two sums over all grasps.

4.2 Semantic Grasps

Figure 2: Examples showing deformation can transfer grasps while preserving their semantic significance. In
the first example, the grasps on the bridge of the template headphone (left) are transferred to a new pair of
headphones (right). Similarly, grasps on the knife handle are transferred to a handle of a new test model.

One strength of deformation for grasping is that it allows for data-efficient semantic grasps. For
example, it is reasonable to want to grasp a hammer by the handle and not the head. Generating large
amounts of training data for grasps that fit semantic criteria is expensive and time-consuming, but it
is feasible to label a few of the templates with these grasps and then learn the deformation in general.
As shown in Figure 2, our approach inherently retains the semantic meanings of grasps. This property
of the deformation approach cannot be replicated by approaches that generate grasps, and can likely
be extended to explicitly deal with object affordances in the future.

5 Discussion and Future Work
We have presented a novel approach for robust robotic grasp transfer based on generating a database
of objects with known 3D shapes and grasps, querying this database for appropriate ’template’ shapes
using a 2D image of an object to be grasped, and deforming the 3D template along with its known
grasps using a deep learning model. Based on evaluation on a small set of shapes within one category
using the Robust Force Closure metric, the deformed grasps are generally inferior to grasps generated
using analytic methods but are nevertheless still likely to be usable in a robotics context. Having
validated that this is a promising approach for grasp transfer, we plan to work towards making this a
fleshed out method for grasping through multiple extensive modifications: converting the similarity
query and deformation methods to make use of RGBD data, exploring modifications to DeformNet
to better generate grasps, generating a much larger dataset with many object categories for training
and evaluation, and ultimately testing the grasp execution with a real robot in an end-to-end manner.
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