default search action
Marcelo Pereyra
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j31]Teresa Klatzer, Paul Dobson, Yoann Altmann, Marcelo Pereyra, Jesús María Sanz-Serna, Konstantinos C. Zygalakis:
Accelerated Bayesian Imaging by Relaxed Proximal-Point Langevin Sampling. SIAM J. Imaging Sci. 17(2): 1078-1117 (2024) - [j30]Charlesquin Kemajou Mbakam, Marcelo Pereyra, Jean-François Giovannelli:
Marginal Likelihood Estimation in Semiblind Image Deconvolution: A Stochastic Approximation Approach. SIAM J. Imaging Sci. 17(2): 1206-1254 (2024) - [j29]Savvas Melidonis, Matthew Holden, Yoann Altmann, Marcelo Pereyra, Konstantinos C. Zygalakis:
Empirical Bayesian Imaging With Large-Scale Push-Forward Generative Priors. IEEE Signal Process. Lett. 31: 631-635 (2024) - [c20]Marcelo Pereyra, Julián Tachella:
Equivariant bootstrapping for uncertainty quantification in imaging inverse problems. AISTATS 2024: 4141-4149 - [i17]Hong Ye Tan, Ziruo Cai, Marcelo Pereyra, Subhadip Mukherjee, Junqi Tang, Carola-Bibiane Schönlieb:
Unsupervised Training of Convex Regularizers using Maximum Likelihood Estimation. CoRR abs/2404.05445 (2024) - [i16]David Y. W. Thong, Charlesquin Kemajou Mbakam, Marcelo Pereyra:
Do Bayesian imaging methods report trustworthy probabilities? CoRR abs/2405.08179 (2024) - [i15]Charlesquin Kemajou Mbakam, Jean-François Giovannelli, Marcelo Pereyra:
Empirical Bayesian image restoration by Langevin sampling with a denoising diffusion implicit prior. CoRR abs/2409.04384 (2024) - [i14]Abdul-Lateef Haji-Ali, Marcelo Pereyra, Luke Shaw, Konstantinos Zygalakis:
Bayesian computation with generative diffusion models by Multilevel Monte Carlo. CoRR abs/2409.15511 (2024) - 2023
- [j28]Rémi Laumont, Valentin De Bortoli, Andrés Almansa, Julie Delon, Alain Durmus, Marcelo Pereyra:
On Maximum a Posteriori Estimation with Plug & Play Priors and Stochastic Gradient Descent. J. Math. Imaging Vis. 65(1): 140-163 (2023) - [j27]Savvas Melidonis, Paul Dobson, Yoann Altmann, Marcelo Pereyra, Konstantinos Zygalakis:
Efficient Bayesian Computation for Low-Photon Imaging Problems. SIAM J. Imaging Sci. 16(3): 1195-1234 (2023) - [j26]Marcelo Pereyra, Luis Vargas Mieles, Konstantinos C. Zygalakis:
The Split Gibbs Sampler Revisited: Improvements to Its Algorithmic Structure and Augmented Target Distribution. SIAM J. Imaging Sci. 16(4): 2040-2071 (2023) - [j25]Subhadip Mukherjee, Andreas Hauptmann, Ozan Öktem, Marcelo Pereyra, Carola-Bibiane Schönlieb:
Learned Reconstruction Methods With Convergence Guarantees: A survey of concepts and applications. IEEE Signal Process. Mag. 40(1): 164-182 (2023) - [i13]Teresa Klatzer, Paul Dobson, Yoann Altmann, Marcelo Pereyra, Jesús María Sanz-Serna, Konstantinos C. Zygalakis:
Accelerated Bayesian imaging by relaxed proximal-point Langevin sampling. CoRR abs/2308.09460 (2023) - [i12]Julián Tachella, Marcelo Pereyra:
Equivariant Bootstrapping for Uncertainty Quantification in Imaging Inverse Problems. CoRR abs/2310.11838 (2023) - [i11]Tobías I. Liaudat, Matthijs Mars, Matthew A. Price, Marcelo Pereyra, Marta M. Betcke, Jason D. McEwen:
Scalable Bayesian uncertainty quantification with data-driven priors for radio interferometric imaging. CoRR abs/2312.00125 (2023) - 2022
- [j24]Xiaohao Cai, Jason D. McEwen, Marcelo Pereyra:
Proximal nested sampling for high-dimensional Bayesian model selection. Stat. Comput. 32(5): 87 (2022) - [j23]Rémi Laumont, Valentin De Bortoli, Andrés Almansa, Julie Delon, Alain Durmus, Marcelo Pereyra:
Bayesian Imaging Using Plug & Play Priors: When Langevin Meets Tweedie. SIAM J. Imaging Sci. 15(2): 701-737 (2022) - [j22]Matthew Holden, Marcelo Pereyra, Konstantinos C. Zygalakis:
Bayesian Imaging with Data-Driven Priors Encoded by Neural Networks. SIAM J. Imaging Sci. 15(2): 892-924 (2022) - [j21]Alain Durmus, Éric Moulines, Marcelo Pereyra:
A Proximal Markov Chain Monte Carlo Method for Bayesian Inference in Imaging Inverse Problems: When Langevin Meets Moreau. SIAM Rev. 64(4): 991-1028 (2022) - [i10]Rémi Laumont, Valentin De Bortoli, Andrés Almansa, Julie Delon, Alain Durmus, Marcelo Pereyra:
On Maximum-a-Posteriori estimation with Plug & Play priors and stochastic gradient descent. CoRR abs/2201.06133 (2022) - [i9]Subhadip Mukherjee, Andreas Hauptmann, Ozan Öktem, Marcelo Pereyra, Carola-Bibiane Schönlieb:
Learned reconstruction with convergence guarantees. CoRR abs/2206.05431 (2022) - 2021
- [j20]Valentin De Bortoli, Alain Durmus, Marcelo Pereyra, Ana Fernandez Vidal:
Efficient stochastic optimisation by unadjusted Langevin Monte Carlo. Stat. Comput. 31(3): 29 (2021) - [c19]Ana Fernandez Vidal, Marcelo Pereyra, Alain Durmus, Jean-François Giovannelli:
Fast Bayesian Model Selection in Imaging Inverse Problems Using Residuals. SSP 2021: 91-95 - [c18]Benjamin Harroué, Jean-François Giovannelli, Marcelo Pereyra:
Bayesian Model Selection for Unsupervised Image Deconvolution with Structured Gaussian Priors. SSP 2021: 241-245 - [i8]Rémi Laumont, Valentin De Bortoli, Andrés Almansa, Julie Delon, Alain Durmus, Marcelo Pereyra:
Bayesian imaging using Plug & Play priors: when Langevin meets Tweedie. CoRR abs/2103.04715 (2021) - [i7]Matthew Holden, Marcelo Pereyra, Konstantinos C. Zygalakis:
Bayesian Imaging With Data-Driven Priors Encoded by Neural Networks: Theory, Methods, and Algorithms. CoRR abs/2103.10182 (2021) - 2020
- [j19]Marcelo Pereyra, Luis Vargas Mieles, Konstantinos C. Zygalakis:
Accelerating Proximal Markov Chain Monte Carlo by Using an Explicit Stabilized Method. SIAM J. Imaging Sci. 13(2): 905-935 (2020) - [j18]Ana Fernandez Vidal, Valentin De Bortoli, Marcelo Pereyra, Alain Durmus:
Maximum Likelihood Estimation of Regularization Parameters in High-Dimensional Inverse Problems: An Empirical Bayesian Approach Part I: Methodology and Experiments. SIAM J. Imaging Sci. 13(4): 1945-1989 (2020) - [j17]Valentin De Bortoli, Alain Durmus, Marcelo Pereyra, Ana Fernandez Vidal:
Maximum Likelihood Estimation of Regularization Parameters in High-Dimensional Inverse Problems: An Empirical Bayesian Approach. Part II: Theoretical Analysis. SIAM J. Imaging Sci. 13(4): 1990-2028 (2020) - [c17]Kelvin Shuangjian Zhang, Gabriel Peyré, Jalal Fadili, Marcelo Pereyra:
Wasserstein Control of Mirror Langevin Monte Carlo. COLT 2020: 3814-3841 - [i6]Kelvin Shuangjian Zhang, Gabriel Peyré, Jalal Fadili, Marcelo Pereyra:
Wasserstein Control of Mirror Langevin Monte Carlo. CoRR abs/2002.04363 (2020)
2010 – 2019
- 2019
- [j16]Audrey Repetti, Marcelo Pereyra, Yves Wiaux:
Scalable Bayesian Uncertainty Quantification in Imaging Inverse Problems via Convex Optimization. SIAM J. Imaging Sci. 12(1): 87-118 (2019) - [j15]Marcelo Pereyra:
Revisiting Maximum-A-Posteriori Estimation in Log-Concave Models. SIAM J. Imaging Sci. 12(1): 650-670 (2019) - [c16]Xiaohao Cai, Marcelo Pereyra, Jason D. McEwen:
Quantifying Uncertainty in High Dimensional Inverse Problems by Convex Optimisation. EUSIPCO 2019: 1-5 - [i5]Luis Vargas, Marcelo Pereyra, Konstantinos C. Zygalakis:
Accelerating proximal Markov chain Monte Carlo by using explicit stabilised methods. CoRR abs/1908.08845 (2019) - 2018
- [j14]Alain Durmus, Eric Moulines, Marcelo Pereyra:
Efficient Bayesian Computation by Proximal Markov Chain Monte Carlo: When Langevin Meets Moreau. SIAM J. Imaging Sci. 11(1): 473-506 (2018) - [c15]Julián Tachella, Yoann Altmann, Marcelo Pereyra, Stephen McLaughlin, Jean-Yves Tourneret:
Bayesian Restoration of High-Dimensional Photon-Starved Images. EUSIPCO 2018: 747-751 - [c14]Audrey Repetti, Marcelo Pereyra, Yves Wiaux:
Uncertainty Quantification in Imaging: When Convex Optimization Meets Bayesian Analysis. EUSIPCO 2018: 2668-2672 - [c13]Ana Fernandez Vidal, Marcelo Pereyra:
Maximum Likelihood Estimation of Regularisation Parameters. ICIP 2018: 1742-1746 - 2017
- [j13]Marcelo Pereyra:
Maximum-a-Posteriori Estimation with Bayesian Confidence Regions. SIAM J. Imaging Sci. 10(1): 285-302 (2017) - [j12]Marcelo Pereyra, Stephen McLaughlin:
Fast Unsupervised Bayesian Image Segmentation With Adaptive Spatial Regularisation. IEEE Trans. Image Process. 26(6): 2577-2587 (2017) - [c12]Nicolas Brosse, Alain Durmus, Eric Moulines, Marcelo Pereyra:
Sampling from a log-concave distribution with compact support with proximal Langevin Monte Carlo. COLT 2017: 319-342 - [i4]Xiaohao Cai, Marcelo Pereyra, Jason D. McEwen:
Uncertainty quantification for radio interferometric imaging: I. proximal MCMC methods. CoRR abs/1711.04818 (2017) - [i3]Xiaohao Cai, Marcelo Pereyra, Jason D. McEwen:
Uncertainty quantification for radio interferometric imaging: II. MAP estimation. CoRR abs/1711.04819 (2017) - 2016
- [j11]Steve McLaughlin, Marcelo Pereyra, Alfred O. Hero III, Jean-Yves Tourneret, Jean-Christophe Pesquet:
Introduction to the Issue on Stochastic Simulation and Optimization in Signal Processing. IEEE J. Sel. Top. Signal Process. 10(2): 221-223 (2016) - [j10]Marcelo Pereyra, Philip Schniter, Emilie Chouzenoux, Jean-Christophe Pesquet, Jean-Yves Tourneret, Alfred O. Hero III, Steve McLaughlin:
A Survey of Stochastic Simulation and Optimization Methods in Signal Processing. IEEE J. Sel. Top. Signal Process. 10(2): 224-241 (2016) - [j9]Marcelo Pereyra:
Proximal Markov chain Monte Carlo algorithms. Stat. Comput. 26(4): 745-760 (2016) - [c11]Marcelo Pereyra, Steve McLaughlin:
Comparing Bayesian models in the absence of ground truth. EUSIPCO 2016: 528-532 - [c10]Antonio Quintero-Rincón, Jorge Prendes, Marcelo Pereyra, Hadj Batatia, Marcelo R. Risk:
Multivariate Bayesian classification of epilepsy EEG signals. IVMSP 2016: 1-5 - [c9]Marcelo Pereyra:
Approximating Bayesian confidence regions in convex inverse problems. SSP 2016: 1-5 - 2015
- [j8]Peter J. Green, Krzysztof Latuszynski, Marcelo Pereyra, Christian P. Robert:
Bayesian computation: a summary of the current state, and samples backwards and forwards. Stat. Comput. 25(4): 835-862 (2015) - [j7]Yoann Altmann, Marcelo Pereyra, Stephen McLaughlin:
Bayesian Nonlinear Hyperspectral Unmixing With Spatial Residual Component Analysis. IEEE Trans. Computational Imaging 1(3): 174-185 (2015) - [j6]Marcelo Pereyra, Hadj Batatia, Steve McLaughlin:
Exploiting Information Geometry to Improve the Convergence of Nonparametric Active Contours. IEEE Trans. Image Process. 24(3): 836-845 (2015) - [j5]Yoann Altmann, Marcelo Pereyra, José M. Bioucas-Dias:
Collaborative sparse regression using spatially correlated supports - Application to hyperspectral unmixing. IEEE Trans. Image Process. 24(12): 5800-5811 (2015) - [c8]Yoann Altmann, Marcelo Pereyra, Steve McLaughlin:
Nonlinear spectral unmixing using residual component analysis and a Gamma Markov random field. CAMSAP 2015: 165-168 - [c7]Marcelo Pereyra, José M. Bioucas-Dias, Mário A. T. Figueiredo:
Maximum-a-posteriori estimation with unknown regularisation parameters. EUSIPCO 2015: 230-234 - [c6]Yoann Altmann, Marcelo Pereyra, José M. Bioucas-Dias:
Linear spectral unmixing using collaborative sparse regression and correlated supports. WHISPERS 2015: 1-4 - [i2]Marcelo Pereyra, Steve McLaughlin:
Fast unsupervised Bayesian image segmentation with adaptive spatial regularisation. CoRR abs/1502.01400 (2015) - [i1]Marcelo Pereyra, Philip Schniter, Emilie Chouzenoux, Jean-Christophe Pesquet, Jean-Yves Tourneret, Alfred O. Hero III, Steve McLaughlin:
Tutorial on Stochastic Simulation and Optimization Methods in Signal Processing. CoRR abs/1505.00273 (2015) - 2014
- [j4]Marcelo Pereyra, Nicolas Dobigeon, Hadj Batatia, Jean-Yves Tourneret:
Computing the Cramer-Rao Bound of Markov Random Field Parameters: Application to the Ising and the Potts Models. IEEE Signal Process. Lett. 21(1): 47-50 (2014) - [c5]Marcelo Pereyra, Steve McLaughlin:
Small-variance asymptotics of hidden Potts-MRFS: Application to fast Bayesian image segmentation. EUSIPCO 2014: 1597-1601 - [c4]Marcelo Pereyra, Nick Whiteley, Christophe Andrieu, Jean-Yves Tourneret:
Maximum marginal likelihood estimation of the granularity coefficient of a Potts-Markov random field within an MCMC algorithm. SSP 2014: 121-124 - 2013
- [j3]Marcelo Pereyra, Hadj Batatia, Steve McLaughlin:
Exploiting Information Geometry to Improve the Convergence Properties of Variational Active Contours. IEEE J. Sel. Top. Signal Process. 7(4): 700-707 (2013) - [j2]Marcelo Pereyra, Nicolas Dobigeon, Hadj Batatia, Jean-Yves Tourneret:
Estimating the Granularity Coefficient of a Potts-Markov Random Field Within a Markov Chain Monte Carlo Algorithm. IEEE Trans. Image Process. 22(6): 2385-2397 (2013) - [c3]Marcelo Pereyra, Hadj Batatia, Steve McLaughlin:
Exploiting information geometry to improve the convergence of nonparametric active contours. CAMSAP 2013: 165-168 - 2012
- [b1]Marcelo Pereyra:
Statistical modeling and processing of high frequency ultrasound images: Application to dermatologic oncology. (Modélisation et traitement statistiques d'images d'ultrasons de haute fréquence. Application à l'oncologie dermatologique). National Polytechnic Institute of Toulouse, France, 2012 - [j1]Marcelo Pereyra, Nicolas Dobigeon, Hadj Batatia, Jean-Yves Tourneret:
Segmentation of Skin Lesions in 2-D and 3-D Ultrasound Images Using a Spatially Coherent Generalized Rayleigh Mixture Model. IEEE Trans. Medical Imaging 31(8): 1509-1520 (2012) - 2011
- [c2]Marcelo Pereyra, Nicolas Dobigeon, Hadj Batatia, Jean-Yves Tourneret:
Segmentation of ultrasound images using a spatially coherent generalized Rayleigh mixture model. EUSIPCO 2011: 664-668 - [c1]Marcelo Pereyra, Nicolas Dobigeon, Hadj Batatia, Jean-Yves Tourneret:
Labeling skin tissues in ultrasound images using a generalized Rayleigh mixture model. ICASSP 2011: 729-732
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-10-22 21:18 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint