default search action
Soumya Ghosh
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j9]Sameer K. Deshpande, Soumya Ghosh, Tin D. Nguyen, Tamara Broderick:
Are you using test log-likelihood correctly? Trans. Mach. Learn. Res. 2024 (2024) - [c38]Maohao Shen, Subhro Das, Kristjan H. Greenewald, Prasanna Sattigeri, Gregory W. Wornell, Soumya Ghosh:
Thermometer: Towards Universal Calibration for Large Language Models. ICML 2024 - [i28]Jongha Jon Ryu, Maohao Shen, Soumya Ghosh, Yuheng Bu, Prasanna Sattigeri, Subhro Das, Gregory W. Wornell:
Improved Evidential Deep Learning via a Mixture of Dirichlet Distributions. CoRR abs/2402.06160 (2024) - [i27]Swapnaja Achintalwar, Adriana Alvarado Garcia, Ateret Anaby-Tavor, Ioana Baldini, Sara E. Berger, Bishwaranjan Bhattacharjee, Djallel Bouneffouf, Subhajit Chaudhury, Pin-Yu Chen, Lamogha Chiazor, Elizabeth M. Daly, Rogério Abreu de Paula, Pierre L. Dognin, Eitan Farchi, Soumya Ghosh, Michael Hind, Raya Horesh, George Kour, Ja Young Lee, Erik Miehling, Keerthiram Murugesan, Manish Nagireddy, Inkit Padhi, David Piorkowski, Ambrish Rawat, Orna Raz, Prasanna Sattigeri, Hendrik Strobelt, Sarathkrishna Swaminathan, Christoph Tillmann, Aashka Trivedi, Kush R. Varshney, Dennis Wei, Shalisha Witherspoon, Marcel Zalmanovici:
Detectors for Safe and Reliable LLMs: Implementations, Uses, and Limitations. CoRR abs/2403.06009 (2024) - [i26]Maohao Shen, Subhro Das, Kristjan H. Greenewald, Prasanna Sattigeri, Gregory W. Wornell, Soumya Ghosh:
Thermometer: Towards Universal Calibration for Large Language Models. CoRR abs/2403.08819 (2024) - [i25]Lucas Monteiro Paes, Dennis Wei, Hyo Jin Do, Hendrik Strobelt, Ronny Luss, Amit Dhurandhar, Manish Nagireddy, Karthikeyan Natesan Ramamurthy, Prasanna Sattigeri, Werner Geyer, Soumya Ghosh:
Multi-Level Explanations for Generative Language Models. CoRR abs/2403.14459 (2024) - [i24]Runqian Wang, Soumya Ghosh, David D. Cox, Diego Antognini, Aude Oliva, Rogério Feris, Leonid Karlinsky:
Trans-LoRA: towards data-free Transferable Parameter Efficient Finetuning. CoRR abs/2405.17258 (2024) - [i23]Tejaswini Pedapati, Amit Dhurandhar, Soumya Ghosh, Soham Dan, Prasanna Sattigeri:
Large Language Model Confidence Estimation via Black-Box Access. CoRR abs/2406.04370 (2024) - [i22]Manish Nagireddy, Inkit Padhi, Soumya Ghosh, Prasanna Sattigeri:
When in Doubt, Cascade: Towards Building Efficient and Capable Guardrails. CoRR abs/2407.06323 (2024) - 2023
- [c37]Maohao Shen, Yuheng Bu, Prasanna Sattigeri, Soumya Ghosh, Subhro Das, Gregory W. Wornell:
Post-hoc Uncertainty Learning Using a Dirichlet Meta-Model. AAAI 2023: 9772-9781 - [c36]Maohao Shen, Soumya Ghosh, Prasanna Sattigeri, Subhro Das, Yuheng Bu, Gregory W. Wornell:
Reliable Gradient-free and Likelihood-free Prompt Tuning. EACL (Findings) 2023: 2371-2384 - [i21]Maohao Shen, Soumya Ghosh, Prasanna Sattigeri, Subhro Das, Yuheng Bu, Gregory W. Wornell:
Reliable Gradient-free and Likelihood-free Prompt Tuning. CoRR abs/2305.00593 (2023) - [i20]Jirí Navrátil, Benjamin Elder, Matthew Arnold, Soumya Ghosh, Prasanna Sattigeri:
Assessment of Prediction Intervals Using Uncertainty Characteristics Curves. CoRR abs/2310.03158 (2023) - 2022
- [j8]Divya Ramamoorthy, Kristen Severson, Soumya Ghosh, Karen Sachs, Emily G. Baxi, Alyssa N. Coyne, Elizabeth Mosmiller, Lindsey Hayes, Aianna Cerezo, Omar Ahmad, Promit Roy, Steven Zeiler, John W. Krakauer, Jonathan Li, Aneesh Donde, Nhan Huynh, Miriam Adam, Brook T. Wassie, Alexander LeNail, Natasha Leanna Patel-Murray, Yogindra Raghav, Velina Kozareva, Stanislav Tsitkov, Tobias Ehrenberger, Julia A. Kaye, Leandro Lima, Stacia K. Wyman, Edward Vertudes, Naufa Amirani, Krishna Raja, Reuben Thomas, Ryan G. Lim, Ricardo Miramontes, Jie Wu, Vineet Vaibhav, Andrea Matlock, Vidya Venkatraman, Ronald Holewenski, Niveda Sundararaman, Rakhi Pandey, Danica-Mae Manalo, Aaron Frank, Loren Ornelas, Lindsey Panther, Emilda Gomez, Erick Galvez, Daniel Pérez, Imara Meepe, Susan Lei, Louis Pinedo, Chunyan Liu, Ruby Moran, Dhruv Sareen, Barry Landin, Carla Agurto, Guillermo A. Cecchi, Raquel Norel, Sara Thrower, Sarah Luppino, Alanna Farrar, Lindsay Pothier, Hong Yu, Ervin Sinani, Prasha Vigneswaran, Alexander V. Sherman, S. Michelle Farr, Berhan Mandefro, Hannah Trost, Maria G. Banuelos, Veronica Garcia, Michael Workman, Richie Ho, Robert Baloh, Jennifer Roggenbuck, Matthew B. Harms, Carolyn Prina, Sarah Heintzman, Stephen Kolb, Jennifer Stocksdale, Keona Wang, Todd Morgan, Daragh Heitzman, Arish Jamil, Jennifer Jockel-Balsarotti, Elizabeth Karanja, Jesse Markway, Molly McCallum, Tim Miller, Ben Joslin, Deniz Alibazoglu, Senda Ajroud-Driss, Jay C. Beavers, Mary Bellard, Elizabeth Bruce, Nicholas J. Maragakis, Merit E. Cudkowicz, James D. Berry, Terri Thompson, Steven Finkbeiner, Leslie M. Thompson, Jennifer E. Van Eyk, Clive N. Svendsen, Jeffrey D. Rothstein, Jonathan D. Glass, Christina N. Fournier, Alexander Sherman, Christian Lunetta, David Walk, Ghazala Hayat, James Wymer, Kelly Gwathmey, Nicholas Olney, Terry Heiman-Patterson, Ximena Arcila-Londono, Kenneth Faulconer, Ervin Sanani, Alex Berger, Julia Mirochnick, Todd M. Herrington, Kenney Ng, Ernest Fraenkel:
Identifying patterns in amyotrophic lateral sclerosis progression from sparse longitudinal data. Nat. Comput. Sci. 2(9): 605-616 (2022) - [c35]William T. Stephenson, Soumya Ghosh, Tin D. Nguyen, Mikhail Yurochkin, Sameer K. Deshpande, Tamara Broderick:
Measuring the robustness of Gaussian processes to kernel choice. AISTATS 2022: 3308-3331 - [c34]Soumya Ghosh, Q. Vera Liao, Karthikeyan Natesan Ramamurthy, Jirí Navrátil, Prasanna Sattigeri, Kush R. Varshney, Yunfeng Zhang:
Uncertainty Quantification 360: A Hands-on Tutorial. COMAD/CODS 2022: 333-335 - [c33]Prasanna Sattigeri, Soumya Ghosh, Inkit Padhi, Pierre L. Dognin, Kush R. Varshney:
Fair Infinitesimal Jackknife: Mitigating the Influence of Biased Training Data Points Without Refitting. NeurIPS 2022 - [c32]Talib A. Al-Sharify, Zinah A. Alshrefy, Hussein Ali Hussein, Zainab T. Al-Sharify, Helen Onyeaka, Mushtaq T. Al-Sharify, Soumya Ghosh:
IoT and E-Learning with the Impact of COVID-19 Pandemic Lockdown on the Undergraduate University Student Blood Pressure Levels. TTSIIT 2022: 73-86 - [i19]Sameer K. Deshpande, Soumya Ghosh, Tin D. Nguyen, Tamara Broderick:
Are you using test log-likelihood correctly? CoRR abs/2212.00219 (2022) - [i18]Prasanna Sattigeri, Soumya Ghosh, Inkit Padhi, Pierre L. Dognin, Kush R. Varshney:
Fair Infinitesimal Jackknife: Mitigating the Influence of Biased Training Data Points Without Refitting. CoRR abs/2212.06803 (2022) - [i17]Maohao Shen, Yuheng Bu, Prasanna Sattigeri, Soumya Ghosh, Subhro Das, Gregory W. Wornell:
Post-hoc Uncertainty Learning using a Dirichlet Meta-Model. CoRR abs/2212.07359 (2022) - 2021
- [j7]Bum Chul Kwon, Vibha Anand, Kristen A. Severson, Soumya Ghosh, Zhaonan Sun, Brigitte I. Frohnert, Markus Lundgren, Kenney Ng:
DPVis: Visual Analytics With Hidden Markov Models for Disease Progression Pathways. IEEE Trans. Vis. Comput. Graph. 27(9): 3685-3700 (2021) - [c31]Siddharth Biswal, Soumya Ghosh, Jon Duke, Bradley A. Malin, Walter F. Stewart, Cao Xiao, Jimeng Sun:
EVA: Generating Longitudinal Electronic Health Records Using Conditional Variational Autoencoders. MLHC 2021: 260-282 - [c30]Meet P. Vadera, Soumya Ghosh, Kenney Ng, Benjamin M. Marlin:
Post-hoc loss-calibration for Bayesian neural networks. UAI 2021: 1403-1412 - [i16]Jirí Navrátil, Benjamin Elder, Matthew Arnold, Soumya Ghosh, Prasanna Sattigeri:
Uncertainty Characteristics Curves: A Systematic Assessment of Prediction Intervals. CoRR abs/2106.00858 (2021) - [i15]Soumya Ghosh, Q. Vera Liao, Karthikeyan Natesan Ramamurthy, Jirí Navrátil, Prasanna Sattigeri, Kush R. Varshney, Yunfeng Zhang:
Uncertainty Quantification 360: A Holistic Toolkit for Quantifying and Communicating the Uncertainty of AI. CoRR abs/2106.01410 (2021) - [i14]William T. Stephenson, Soumya Ghosh, Tin D. Nguyen, Mikhail Yurochkin, Sameer K. Deshpande, Tamara Broderick:
Measuring the sensitivity of Gaussian processes to kernel choice. CoRR abs/2106.06510 (2021) - [i13]Meet P. Vadera, Soumya Ghosh, Kenney Ng, Benjamin M. Marlin:
Post-hoc loss-calibration for Bayesian neural networks. CoRR abs/2106.06997 (2021) - 2020
- [j6]Bin Liu, Ying Li, Soumya Ghosh, Zhaonan Sun, Kenney Ng, Jianying Hu:
Complication Risk Profiling in Diabetes Care: A Bayesian Multi-Task and Feature Relationship Learning Approach. IEEE Trans. Knowl. Data Eng. 32(7): 1276-1289 (2020) - [c29]Sebastian Claici, Mikhail Yurochkin, Soumya Ghosh, Justin Solomon:
Model Fusion with Kullback-Leibler Divergence. ICML 2020: 2038-2047 - [c28]Kristen A. Severson, Lana M. Chahine, Luba Smolensky, Kenney Ng, Jianying Hu, Soumya Ghosh:
Personalized Input-Output Hidden Markov Models for Disease Progression Modeling. MLHC 2020: 309-330 - [c27]Soumya Ghosh, William T. Stephenson, Tin D. Nguyen, Sameer K. Deshpande, Tamara Broderick:
Approximate Cross-Validation for Structured Models. NeurIPS 2020 - [i12]Soumya Ghosh, William T. Stephenson, Tin D. Nguyen, Sameer K. Deshpande, Tamara Broderick:
Approximate Cross-Validation for Structured Models. CoRR abs/2006.12669 (2020) - [i11]Sebastian Claici, Mikhail Yurochkin, Soumya Ghosh, Justin Solomon:
Model Fusion with Kullback-Leibler Divergence. CoRR abs/2007.06168 (2020) - [i10]Siddharth Biswal, Soumya Ghosh, Jon Duke, Bradley A. Malin, Walter F. Stewart, Jimeng Sun:
EVA: Generating Longitudinal Electronic Health Records Using Conditional Variational Autoencoders. CoRR abs/2012.10020 (2020)
2010 – 2019
- 2019
- [j5]Soumya Ghosh, Jiayu Yao, Finale Doshi-Velez:
Model Selection in Bayesian Neural Networks via Horseshoe Priors. J. Mach. Learn. Res. 20: 182:1-182:46 (2019) - [c26]Kristen A. Severson, Soumya Ghosh, Kenney Ng:
Unsupervised Learning with Contrastive Latent Variable Models. AAAI 2019: 4862-4869 - [c25]Mikhail Yurochkin, Mayank Agarwal, Soumya Ghosh, Kristjan H. Greenewald, Trong Nghia Hoang, Yasaman Khazaeni:
Bayesian Nonparametric Federated Learning of Neural Networks. ICML 2019: 7252-7261 - [c24]Mikhail Yurochkin, Mayank Agarwal, Soumya Ghosh, Kristjan H. Greenewald, Trong Nghia Hoang:
Statistical Model Aggregation via Parameter Matching. NeurIPS 2019: 10954-10964 - [i9]Bum Chul Kwon, Vibha Anand, Kristen A. Severson, Soumya Ghosh, Zhaonan Sun, Brigitte I. Frohnert, Markus Lundgren, Kenney Ng:
DPVis: Visual Exploration of Disease Progression Pathways. CoRR abs/1904.11652 (2019) - [i8]Mikhail Yurochkin, Mayank Agarwal, Soumya Ghosh, Kristjan H. Greenewald, Trong Nghia Hoang, Yasaman Khazaeni:
Bayesian Nonparametric Federated Learning of Neural Networks. CoRR abs/1905.12022 (2019) - [i7]Jiayu Yao, Weiwei Pan, Soumya Ghosh, Finale Doshi-Velez:
Quality of Uncertainty Quantification for Bayesian Neural Network Inference. CoRR abs/1906.09686 (2019) - [i6]Mikhail Yurochkin, Mayank Agarwal, Soumya Ghosh, Kristjan H. Greenewald, Trong Nghia Hoang:
Statistical Model Aggregation via Parameter Matching. CoRR abs/1911.00218 (2019) - 2018
- [j4]Animesh Hazra, Soumya Ghosh, Sampad Jash:
A Review on DNA Based Cryptographic Techniques. Int. J. Netw. Secur. 20(6): 1093-1104 (2018) - [c23]Bin Liu, Ying Li, Zhaonan Sun, Soumya Ghosh, Kenney Ng:
Early Prediction of Diabetes Complications from Electronic Health Records: A Multi-Task Survival Analysis Approach. AAAI 2018: 101-108 - [c22]Ajjen Joshi, Soumya Ghosh, Sarah Gunnery, Linda Tickle-Degnen, Stan Sclaroff, Margrit Betke:
Context-Sensitive Prediction of Facial Expressivity Using Multimodal Hierarchical Bayesian Neural Networks. FG 2018: 278-285 - [c21]Soumya Ghosh, Jiayu Yao, Finale Doshi-Velez:
Structured Variational Learning of Bayesian Neural Networks with Horseshoe Priors. ICML 2018: 1739-1748 - [i5]Bin Liu, Ying Li, Soumya Ghosh, Zhaonan Sun, Kenney Ng, Jianying Hu:
Simultaneous Modeling of Multiple Complications for Risk Profiling in Diabetes Care. CoRR abs/1802.06476 (2018) - [i4]Soumya Ghosh, Jiayu Yao, Finale Doshi-Velez:
Structured Variational Learning of Bayesian Neural Networks with Horseshoe Priors. CoRR abs/1806.05975 (2018) - [i3]Kristen A. Severson, Soumya Ghosh, Kenney Ng:
Unsupervised learning with contrastive latent variable models. CoRR abs/1811.06094 (2018) - [i2]Melanie F. Pradier, Weiwei Pan, Jiayu Yao, Soumya Ghosh, Finale Doshi-Velez:
Latent Projection BNNs: Avoiding weight-space pathologies by learning latent representations of neural network weights. CoRR abs/1811.07006 (2018) - 2017
- [c20]Zhaonan Sun, Ying Li, Soumya Ghosh, Yu Cheng, Amrita Mohan, Cristina Sampaio:
A Data-Driven Method for Generating Robust Symptom Onset Indicators in Disease Registry Data. AMIA 2017 - [c19]Vibha Anand, Amos Cahan, Soumya Ghosh:
Clinical Trials.Gov: A Topical Analyses. CRI 2017 - [c18]Soumya Ghosh, Zhaonan Sun, Ying Li, Yu Cheng, Amrita Mohan, Cristina Sampaio, Jianying Hu:
An Exploration of Latent Structure in Observational Huntington's Disease Studies. CRI 2017 - [c17]Zhaonan Sun, Ying Li, Soumya Ghosh, Yu Cheng, Amrita Mohan, Cristina Sampaio, Jianying Hu:
Exploring Factors that Associated with Missing Values in Observational Huntington's Disease Study Data. CRI 2017 - [c16]Ajjen Joshi, Soumya Ghosh, Margrit Betke, Stan Sclaroff, Hanspeter Pfister:
Personalizing Gesture Recognition Using Hierarchical Bayesian Neural Networks. CVPR 2017: 455-464 - [c15]Vibha Anand, Soumya Ghosh, Amit Anand:
Is There a Priority Shift in Mental Health Clinical Trials? MedInfo 2017: 280-284 - 2016
- [c14]Soumya Ghosh, Francesco Maria Delle Fave, Jonathan S. Yedidia:
Assumed Density Filtering Methods for Learning Bayesian Neural Networks. AAAI 2016: 1589-1595 - [c13]Soumya Ghosh, Yu Cheng, Zhaonan Sun:
Deep State Space Models for Computational Phenotyping. ICHI 2016: 399-402 - [c12]Samir Karmakar, Sayantani Banerjee, Soumya Ghosh:
Graph theoretic interpretation of Bangla traditional grammar. ICON 2016: 129-136 - 2015
- [b1]Soumya Ghosh:
Bayesian Nonparametric Discovery of Layers and Parts from Scenes and Objects. Brown University, USA, 2015 - 2014
- [c11]Robert L. Hollingshead, David Putrino, Soumya Ghosh, Tele Tan:
Investigation into machine learning algorithms as applied to motor cortex signals for classification of movement stages. EMBC 2014: 1290-1293 - [c10]Soumya Ghosh, Michalis Raptis, Leonid Sigal, Erik B. Sudderth:
Nonparametric Clustering with Distance Dependent Hierarchies. UAI 2014: 260-269 - 2012
- [c9]Soumya Ghosh, Erik B. Sudderth:
Nonparametric learning for layered segmentation of natural images. CVPR 2012: 2272-2279 - [c8]Soumya Ghosh, Erik B. Sudderth, Matthew Loper, Michael J. Black:
From Deformations to Parts: Motion-based Segmentation of 3D Objects. NIPS 2012: 2006-2014 - 2011
- [j3]Sanggyun Kim, David Putrino, Soumya Ghosh, Emery N. Brown:
A Granger Causality Measure for Point Process Models of Ensemble Neural Spiking Activity. PLoS Comput. Biol. 7(3) (2011) - [c7]Soumya Ghosh, Andrei B. Ungureanu, Erik B. Sudderth, David M. Blei:
Spatial distance dependent Chinese restaurant processes for image segmentation. NIPS 2011: 1476-1484 - [i1]Debajyoti Mukhopadhyay, Sajal Mukherjee, Soumya Ghosh, Saheli Kar, Young-Chon Kim:
Architecture of A Scalable Dynamic Parallel WebCrawler with High Speed Downloadable Capability for a Web Search Engine. CoRR abs/1102.0676 (2011) - 2010
- [j2]Soumya Ghosh, Tomasz F. Stepinski, Ricardo Vilalta:
Automatic Annotation of Planetary Surfaces With Geomorphic Labels. IEEE Trans. Geosci. Remote. Sens. 48(1-1): 175-185 (2010) - [c6]Soumya Ghosh, Jane Mulligan:
A segmentation guided label propagation scheme for autonomous navigation. ICRA 2010: 895-902
2000 – 2009
- 2009
- [c5]Soumya Ghosh, Soundararajan Srinivasan, Burton Andrews:
Using weak supervision in learning Gaussian mixture models. IJCNN 2009: 973-979 - [c4]Steven Bethard, Soumya Ghosh, James H. Martin, Tamara Sumner:
Topic model methods for automatically identifying out-of-scope resources. JCDL 2009: 19-28 - [c3]Soumya Ghosh, Joseph J. Pfeiffer III, Jane Mulligan:
A general framework for reconciling multiple weak segmentations of an image. WACV 2009: 1-8 - 2007
- [j1]Tomasz F. Stepinski, Ricardo Vilalta, Soumya Ghosh:
Machine Learning Tools for Automatic Mapping of Martian Landforms. IEEE Intell. Syst. 22(6): 100-106 (2007) - [c2]Tomasz F. Stepinski, Soumya Ghosh, Ricardo Vilalta:
Machine Learning for Automatic Mapping of Planetary Surfaces. AAAI 2007: 1807-1812 - 2006
- [c1]Tomasz F. Stepinski, Soumya Ghosh, Ricardo Vilalta:
Automatic Recognition of Landforms on Mars Using Terrain Segmentation and Classification. Discovery Science 2006: 255-266
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-10-07 22:18 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint