default search action
Tomasz Kryjak
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [c61]Kamil Jeziorek, Piotr Wzorek, Krzysztof Blachut, Andréa Pinna, Tomasz Kryjak:
Optimising Graph Representation for Hardware Implementation of Graph Convolutional Networks for Event-Based Vision. DASIP 2024: 110-122 - [c60]Hubert Szolc, Karol Desnos, Tomasz Kryjak:
Tangled Program Graphs as an alternative to DRL-based control algorithms for UAVs. SPA 2024: 36-41 - [i30]Kamil Jeziorek, Piotr Wzorek, Krzysztof Blachut, Andréa Pinna, Tomasz Kryjak:
Optimising Graph Representation for Hardware Implementation of Graph Convolutional Networks for Event-based Vision. CoRR abs/2401.04988 (2024) - [i29]Kamil Jeziorek, Piotr Wzorek, Krzysztof Blachut, Andréa Pinna, Tomasz Kryjak:
Embedded Graph Convolutional Networks for Real-Time Event Data Processing on SoC FPGAs. CoRR abs/2406.07318 (2024) - [i28]Dominika Przewlocka-Rus, Tomasz Kryjak, Marek Gorgon:
PowerYOLO: Mixed Precision Model for Hardware Efficient Object Detection with Event Data. CoRR abs/2407.08272 (2024) - [i27]Tomasz Kryjak:
Event-based vision on FPGAs - a survey. CoRR abs/2407.08356 (2024) - 2023
- [c59]Maciej Baczmanski, Mateusz Wasala, Tomasz Kryjak:
Implementation of a Perception System for Autonomous Vehicles Using a Detection-Segmentation Network in SoC FPGA. ARC 2023: 200-211 - [c58]Marcin Kowalczyk, Tomasz Kryjak:
Interpolation-Based Event Visual Data Filtering Algorithms. CVPR Workshops 2023: 4056-4064 - [c57]Mariusz Grabowski, Tomasz Kryjak:
Real-Time FPGA Implementation of the Semi-global Matching Stereo Vision Algorithm for a 4K/UHD Video Stream. DASIP 2023: 70-81 - [c56]Dominika Przewlocka-Rus, Tomasz Kryjak:
Power-of- Two Quantized YOLO Network for Pedestrian Detection with Dynamic Vision Sensor. DSD 2023: 39-45 - [c55]Maciej Baczmanski, Robert Synoczek, Mateusz Wasala, Tomasz Kryjak:
Detection-segmentation convolutional neural network for autonomous vehicle perception. MMAR 2023: 117-122 - [c54]Konrad Lis, Tomasz Kryjak:
Comparative study of subset selection methods for rapid prototyping of 3D object detection algorithms. MMAR 2023: 344-349 - [c53]Krzysztof Blachut, Tomasz Kryjak:
High-definition event frame generation using SoC FPGA devices. SPA 2023: 106-111 - [c52]Kamil Jeziorek, Andréa Pinna, Tomasz Kryjak:
Memory-Efficient Graph Convolutional Networks for Object Classification and Detection with Event Cameras. SPA 2023: 160-165 - [i26]Mariusz Grabowski, Tomasz Kryjak:
Real-time FPGA implementation of the Semi-Global Matching stereo vision algorithm for a 4K/UHD video stream. CoRR abs/2301.04847 (2023) - [i25]Piotr Wzorek, Tomasz Kryjak:
Pedestrian detection with high-resolution event camera. CoRR abs/2305.18008 (2023) - [i24]Maciej Baczmanski, Robert Synoczek, Mateusz Wasala, Tomasz Kryjak:
Detection-segmentation convolutional neural network for autonomous vehicle perception. CoRR abs/2306.17485 (2023) - [i23]Konrad Lis, Tomasz Kryjak:
Comparative study of subset selection methods for rapid prototyping of 3D object detection algorithms. CoRR abs/2306.17551 (2023) - [i22]Maciej Baczmanski, Mateusz Wasala, Tomasz Kryjak:
Implementation of a perception system for autonomous vehicles using a detection-segmentation network in SoC FPGA. CoRR abs/2307.08682 (2023) - [i21]Kamil Jeziorek, Andréa Pinna, Tomasz Kryjak:
Memory-Efficient Graph Convolutional Networks for Object Classification and Detection with Event Cameras. CoRR abs/2307.14124 (2023) - [i20]Krzysztof Blachut, Tomasz Kryjak:
High-definition event frame generation using SoC FPGA devices. CoRR abs/2307.14177 (2023) - [i19]Pawel Miera, Hubert Szolc, Tomasz Kryjak:
LiDAR-based drone navigation with reinforcement learning. CoRR abs/2307.14313 (2023) - 2022
- [j14]Dominika Przewlocka-Rus, Tomasz Kryjak:
The bioinspired traffic sign classifier. Bio Algorithms Med Syst. 18(1): 29-38 (2022) - [j13]Krzysztof Blachut, Tomasz Kryjak:
Real-Time Efficient FPGA Implementation of the Multi-Scale Lucas-Kanade and Horn-Schunck Optical Flow Algorithms for a 4K Video Stream. Sensors 22(13): 5017 (2022) - [j12]Tomasz Kryjak, Andréa Pinna:
Guest Editorial: Special Issue on Design and Architectures for Signal and Image Processing 2021. J. Signal Process. Syst. 94(7): 621-622 (2022) - [j11]Krzysztof Blachut, Michal Danilowicz, Hubert Szolc, Mateusz Wasala, Tomasz Kryjak, Mateusz Komorkiewicz:
Automotive Perception System Evaluation with Reference Data from a UAV's Camera Using ArUco Markers and DCNN. J. Signal Process. Syst. 94(7): 675-692 (2022) - [c51]Michal Danilowicz, Tomasz Kryjak:
Real-Time Embedded Object Tracking with Discriminative Correlation Filters Using Convolutional Features. ARC 2022: 166-180 - [c50]Dominika Przewlocka-Rus, Tomasz Kryjak:
Towards Real-Time and Energy Efficient Siamese Tracking - A Hardware-Software Approach. DASIP 2022: 162-173 - [c49]Marcin Kowalczyk, Tomasz Kryjak:
Hardware architecture for high throughput event visual data filtering with matrix of IIR filters algorithm. DSD 2022: 284-291 - [c48]Sylwia Kuros, Tomasz Kryjak:
Traffic Sign Classification Using Deep and Quantum Neural Networks. ICCVG 2022: 43-55 - [c47]Konrad Lis, Tomasz Kryjak:
PointPillars Backbone Type Selection for Fast and Accurate LiDAR Object Detection. ICCVG 2022: 99-119 - [c46]Dominika Przewlocka-Rus, Tomasz Kryjak:
Energy Efficient Hardware Acceleration of Neural Networks with Power-of-Two Quantisation. ICCVG 2022: 225-236 - [c45]Mateusz Wasala, Tomasz Kryjak:
Real-time HOG+SVM based object detection using SoC FPGA for a UHD video stream. MECO 2022: 1-6 - [c44]Piotr Wzorek, Tomasz Kryjak:
Traffic Sign Detection With Event Cameras and DCNN. SPA 2022: 86-91 - [c43]Hubert Szolc, Tomasz Kryjak:
Hardware-in-the-loop simulation of a UAV autonomous landing algorithm implemented in SoC FPGA. SPA 2022: 135-140 - [i18]Mateusz Wasala, Tomasz Kryjak:
Real-time HOG+SVM based object detection using SoC FPGA for a UHD video stream. CoRR abs/2204.10619 (2022) - [i17]Dominika Przewlocka-Rus, Tomasz Kryjak:
Towards real-time and energy efficient Siamese tracking - a hardware-software approach. CoRR abs/2205.10653 (2022) - [i16]Marcin Kowalczyk, Tomasz Kryjak:
Hardware architecture for high throughput event visual data filtering with matrix of IIR filters algorithm. CoRR abs/2207.00860 (2022) - [i15]Hubert Szolc, Tomasz Kryjak:
Hardware-in-the-loop simulation of a UAV autonomous landing algorithm implemented in SoC FPGA. CoRR abs/2207.12198 (2022) - [i14]Piotr Wzorek, Tomasz Kryjak:
Traffic Sign Detection With Event Cameras and DCNN. CoRR abs/2207.13345 (2022) - [i13]Sylwia Kuros, Tomasz Kryjak:
Traffic Sign Classification Using Deep and Quantum Neural Networks. CoRR abs/2209.15251 (2022) - [i12]Konrad Lis, Tomasz Kryjak:
PointPillars Backbone Type Selection For Fast and Accurate LiDAR Object Detection. CoRR abs/2209.15252 (2022) - [i11]Dominika Przewlocka-Rus, Tomasz Kryjak:
Energy Efficient Hardware Acceleration of Neural Networks with Power-of-Two Quantisation. CoRR abs/2209.15257 (2022) - [i10]Kamil Bialik, Marcin Kowalczyk, Krzysztof Blachut, Tomasz Kryjak:
Fast-moving object counting with an event camera. CoRR abs/2212.08384 (2022) - [i9]Kamil Jeziorek, Tomasz Kryjak:
Traffic sign detection and recognition using event camera image reconstruction. CoRR abs/2212.08387 (2022) - 2021
- [j10]Marcin Kowalczyk, Piotr Ciarach, Dominika Przewlocka-Rus, Hubert Szolc, Tomasz Kryjak:
Real-Time FPGA Implementation of Parallel Connected Component Labelling for a 4K Video Stream. J. Signal Process. Syst. 93(5): 481-498 (2021) - [c42]Dominika Przewlocka-Rus, Marcin Kowalczyk, Tomasz Kryjak:
Exploration of Hardware Acceleration Methods for an XNOR Traffic Signs Classifier. CORES/IP&C/ACS 2021: 34-45 - [c41]Krzysztof Blachut, Michal Danilowicz, Hubert Szolc, Mateusz Wasala, Tomasz Kryjak, Nikodem Pankiewicz, Mateusz Komorkiewicz:
Automotive perception system evaluation with reference data obtained by a UAV. DASIP 2021: 10-18 - [c40]Joanna Stanisz, Konrad Lis, Tomasz Kryjak, Marek Gorgon:
Hardware-software implementation of the PointPillars network for 3D object detection in point clouds. DASIP 2021: 44-51 - [c39]Marcin Kowalczyk, Tomasz Kryjak:
A Connected Component Labelling algorithm for a multi-pixel per clock cycle video stream. DSD 2021: 43-50 - [c38]Joanna Stanisz, Konrad Lis, Tomasz Kryjak, Marek Gorgon:
Hardware-software implementation of a DNN for 3D object detection using FINN - a demo. FPL 2021: 398 - [c37]Marcin Kowalczyk, Tomasz Kryjak:
A comparison of real-time 4K/UltraHD connected component labelling architectures. FPL 2021: 401 - [c36]Dominika Przewlocka-Rus, Tomasz Kryjak:
Quantised Siamese Tracker for 4K/UltraHD Video Stream - a demo. FPL 2021: 405 - [c35]Artur Cyba, Hubert Szolc, Tomasz Kryjak:
A simple vision-based navigation and control strategy for autonomous drone racing. MMAR 2021: 185-190 - [e1]Tomasz Kryjak, Andrea Pinna:
DASIP '21: Workshop on Design and Architectures for Signal and Image Processing (14th edition) - in conjunction with HiPEAC 2021, Budapest, Hungary, January 18-20, 2021. ACM 2021, ISBN 978-1-4503-8901-3 [contents] - [i8]Dominika Przewlocka-Rus, Marcin Kowalczyk, Tomasz Kryjak:
Exploration of Hardware Acceleration Methods for an XNOR Traffic Signs Classifier. CoRR abs/2104.02303 (2021) - [i7]Artur Cyba, Hubert Szolc, Tomasz Kryjak:
A simple vision-based navigation and control strategy for autonomous drone racing. CoRR abs/2104.09815 (2021) - [i6]Marcin Kowalczyk, Tomasz Kryjak:
A Connected Component Labelling algorithm for multi-pixel per clock cycle video stream. CoRR abs/2105.09658 (2021) - [i5]Piotr Wzorek, Tomasz Kryjak:
Training dataset generation for bridge game registration. CoRR abs/2109.11861 (2021) - 2020
- [c34]Krzysztof Blachut, Hubert Szolc, Mateusz Wasala, Tomasz Kryjak, Marek Gorgon:
A Vision Based Hardware-Software Real-Time Control System for the Autonomous Landing of an UAV. ICCVG 2020: 13-24 - [c33]Dominika Przewlocka, Mateusz Wasala, Hubert Szolc, Krzysztof Blachut, Tomasz Kryjak:
Optimisation of a Siamese Neural Network for Real-Time Energy Efficient Object Tracking. ICCVG 2020: 151-163 - [c32]Piotr Janus, Tomasz Kryjak, Marek Gorgon:
Foreground Object Segmentation in RGB-D Data Implemented on GPU. KKA 2020: 809-820 - [c31]Joanna Stanisz, Konrad Lis, Tomasz Kryjak, Marek Gorgon:
Optimisation of the PointPillars network for 3D object detection in point clouds. SPA 2020: 122-127 - [i4]Piotr Janus, Tomasz Kryjak, Marek Gorgon:
Foreground object segmentation in RGB-D data implemented on GPU. CoRR abs/2002.00250 (2020) - [i3]Krzysztof Blachut, Hubert Szolc, Mateusz Wasala, Tomasz Kryjak, Marek Gorgon:
Vision based hardware-software real-time control system for autonomous landing of an UAV. CoRR abs/2004.11612 (2020) - [i2]Dominika Przewlocka, Mateusz Wasala, Hubert Szolc, Krzysztof Blachut, Tomasz Kryjak:
Optimisation of a Siamese Neural Network for Real-Time Energy Efficient Object Tracking. CoRR abs/2007.00491 (2020) - [i1]Joanna Stanisz, Konrad Lis, Tomasz Kryjak, Marek Gorgon:
Optimisation of the PointPillars network for 3D object detection in point clouds. CoRR abs/2007.00493 (2020)
2010 – 2019
- 2019
- [c30]Piotr Ciarach, Marcin Kowalczyk, Dominika Przewlocka, Tomasz Kryjak:
Real-Time FPGA Implementation of Connected Component Labelling for a 4K Video Stream. ARC 2019: 165-180 - [c29]Marcin Kowalczyk, Dominika Przewlocka, Tomasz Kryjak:
Real-Time Implementation of Adaptive Correlation Filter Tracking for 4K Video Stream in Zynq UltraScale+ MPSoC. DASIP 2019: 53-58 - 2018
- [j9]Tomasz Kryjak, Mateusz Komorkiewicz, Marek Gorgon:
Real-time hardware-software embedded vision system for ITS smart camera implemented in Zynq SoC. J. Real Time Image Process. 15(1): 123-159 (2018) - [c28]Kamil Piszczek, Piotr Janus, Tomasz Kryjak:
The Use of HACP+SBT Lossless Compression in Optimizing Memory Bandwidth Requirement for Hardware Implementation of Background Modelling Algorithms. ARC 2018: 379-391 - [c27]Marcin Kowalczyk, Dominika Przewlocka, Tomasz Kryjak:
Real-Time Implementation of Contextual Image Processing Operations for 4K Video Stream in Zynq UltraScale+ MPSoC. DASIP 2018: 37-42 - [c26]Karol Radwan, Tomasz Kryjak, Marek Gorgon:
Hardware-Software Implementation of a SFM Module for Navigation an Unmanned Aerial Vehicles-A Demo. DASIP 2018: 60-61 - [c25]Patryk Fraczek, André Mora, Tomasz Kryjak:
Embedded Vision System for Automated Drone Landing Site Detection. ICCVG 2018: 397-409 - [c24]Piotr Janus, Tomasz Kryjak:
Hardware implementation of the Gaussian Mixture Model foreground object segmentation algorithm working with ultra-high resolution video stream in real-time. SPA 2018: 140-145 - 2017
- [c23]Marcin Kowalczyk, Tomasz Kryjak, Marek Gorgon:
Object tracking with the use of a moving camera implemented in heterogeneous zynq SoC - A demo. DASIP 2017: 1-2 - [c22]Tomasz Kryjak, Artur Skirzynski, Marek Gorgon:
Hardware-software abandoned object detection vision system in heterogeneous zynq device. DASIP 2017: 1-2 - [c21]Marcin Kowalczyk, Tomasz Kryjak:
Object Tracking With the Use of a Moving Camera Implemented in Heterogeneous Zynq System on Chip. KKA 2017: 354-363 - [c20]Bartosz Meus, Tomasz Kryjak, Marek Gorgon:
Embedded vision system for pedestrian detection based on HOG+SVM and use of motion information implemented in Zynq heterogeneous device. SPA 2017: 406-411 - 2016
- [c19]Piotr Augustyniak, Miroslaw Jablonski, Eliasz Kantoch, Tomasz Kryjak, Zbigniew Mikrut, Elzbieta Pociask, Jaromir Przybylo:
Using Scanpath Analysis for Affects Detection in Computer Users. AfCAI 2016 - [c18]Tomasz Kryjak, Marek Gorgon, Mateusz Komorkiewicz:
An Efficient Hardware Architecture for Block Based Image Processing Algorithms. ARC 2016: 54-65 - [c17]Walter Stechele, Tomasz Kryjak, Lionel Lacassagne, Dominique Houzet, Martin Danek:
Special session 1 automotive parallel computing challenges - architectures, applications and tricks. DASIP 2016: 161 - [c16]Mateusz Komorkiewicz, Krzysztof Turek, Pawel Skruch, Tomasz Kryjak, Marek Gorgon:
FPGA-based Hardware-in-the-Loop environment using video injection concept for camera-based systems in automotive applications. DASIP 2016: 183-190 - [c15]Bartlomiej Hebda, Tomasz Kryjak:
A compact deep convolutional neural network architecture for video based age and gender estimation. FedCSIS 2016: 787-790 - [c14]Piotr Janus, Kamil Piszczek, Tomasz Kryjak:
FPGA Implementation of the Flux Tensor Moving Object Detection Method. ICCVG 2016: 486-497 - 2015
- [c13]Mateusz Komorkiewicz, Tomasz Kryjak, Katarzyna Chuchacz-Kowalczyk, Pawel Skruch, Marek Gorgon:
FPGA based system for real-time structure from motion computation. DASIP 2015: 1-7 - [c12]Tomasz Kryjak, Damian Krol:
Shape and colour recognition of dishes for the purpose of customer service process automation in a self-service canteen. FedCSIS 2015: 799-808 - [c11]Tomasz Kryjak, Marek Gorgon:
Real-Time Implementation of Background Modelling Algorithms in FPGA Devices. ICIAP Workshops 2015: 519-526 - 2014
- [j8]Tomasz Kryjak, Mateusz Komorkiewicz, Marek Gorgon:
Real-time implementation of foreground object detection from a moving camera using the ViBe algorithm. Comput. Sci. Inf. Syst. 11(4): 1617-1637 (2014) - [j7]Tomasz Kryjak, Mateusz Komorkiewicz, Marek Gorgon:
Real-time background generation and foreground object segmentation for high-definition colour video stream in FPGA device. J. Real Time Image Process. 9(1): 61-77 (2014) - [j6]Mateusz Komorkiewicz, Tomasz Kryjak, Marek Gorgon:
Efficient Hardware Implementation of the Horn-Schunck Algorithm for High-Resolution Real-Time Dense Optical Flow Sensor. Sensors 14(2): 2860-2891 (2014) - [c10]Tomasz Kryjak, Mateusz Komorkiewicz, Marek Gorgon:
Hardware-software implementation of vehicle detection and counting using virtual detection lines. DASIP 2014: 1-8 - [c9]Tomasz Kryjak, Jorge Portilla:
Demo night. DASIP 2014: 1 - [c8]Bartlomiej Bulat, Tomasz Kryjak, Marek Gorgon:
Implementation of Advanced Foreground Segmentation Algorithms GMM, ViBE and PBAS in FPGA and GPU - A Comparison. ICCVG 2014: 124-131 - 2013
- [c7]Tomasz Kryjak, Marek Gorgon:
Real-time Implementation of the ViBe Foreground Object Segmentation Algorithm. FedCSIS 2013: 591-596 - [c6]Tomasz Kryjak, Mateusz Komorkiewicz, Marek Gorgon:
Hardware implementation of the PBAS foreground detection method in FPGA. MIXDES 2013: 479-484 - 2012
- [j5]Tomasz Kryjak, Marek Gorgon:
Pipeline Implementation of Peer Group Filtering in FPGA. Comput. Informatics 31(4): 727- (2012) - [c5]Tomasz Kryjak, Mateusz Komorkiewicz, Marek Gorgon:
FPGA implementation of camera tamper detection in real-time. DASIP 2012: 1-8 - [c4]Tomasz Kryjak, Mateusz Komorkiewicz, Marek Gorgon:
FPGA implementation of real-time head-shoulder detection using local binary patterns, SVM and foreground object detection. DASIP 2012: 1-8 - [c3]Tomasz Kryjak, Mateusz Komorkiewicz, Marek Gorgon:
Is FPGA a suitable platform for advanced video surveillance systems? DASIP 2012: 1-2 - 2011
- [j4]Tomasz Kryjak, Marek Gorgon:
Real-Time Implementation of Moving Object Detection in Video Surveillance Systems using FPGA. Comput. Sci. 12: 149-162 (2011) - [j3]Malgorzata Wlodarczyk, Tomasz Kryjak, Piotr Wolski:
Effectiveness analysis of selected attention models. Bio Algorithms Med Syst. 7(1): 49-56 (2011) - [c2]Tomasz Kryjak, Mateusz Komorkiewicz, Marek Gorgon:
Real-time moving object detection for video surveillance system in FPGA. DASIP 2011: 209-216 - 2010
- [j2]Tomasz Kryjak, Marek Gorgon:
Parallel implementation of local thresholding in Mitrion-C. Int. J. Appl. Math. Comput. Sci. 20(3): 571-580 (2010) - [j1]Malgorzata Wlodarczyk, Tomasz Kryjak, Piotr Wolski:
Effectiveness analysis of selected attention models. Bio Algorithms Med Syst. 6(12-S): 217-218 (2010)
2000 – 2009
- 2009
- [c1]Tomasz Kryjak, Marek Gorgon:
Pipeline implementation of the 128-bit block cipher CLEFIA in FPGA. FPL 2009: 373-378
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-11-11 22:22 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint