default search action
Sandro Ridella
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j58]Luca Oneto, Sandro Ridella, Davide Anguita:
Towards algorithms and models that we can trust: A theoretical perspective. Neurocomputing 592: 127798 (2024) - 2023
- [j57]Luca Oneto, Sandro Ridella, Davide Anguita:
Do we really need a new theory to understand over-parameterization? Neurocomputing 543: 126227 (2023) - [c46]Luca Oneto, Sandro Ridella, Davide Anguita:
Towards Randomized Algorithms and Models that We Can Trust: a Theoretical Perspective. ESANN 2023 - 2022
- [j56]Luca Oneto, Sandro Ridella, Davide Anguita:
The benefits of adversarial defense in generalization. Neurocomputing 505: 125-141 (2022) - [c45]Luca Oneto, Sandro Ridella, Davide Anguita:
Do We Really Need a New Theory to Understand the Double-Descent? ESANN 2022 - 2021
- [j55]Luca Oneto, Sandro Ridella:
Distribution-Dependent Weighted Union Bound. Entropy 23(1): 101 (2021) - [c44]Luca Oneto, Sandro Ridella, Davide Anguita:
The Benefits of Adversarial Defence in Generalisation. ESANN 2021 - 2020
- [c43]Luca Oneto, Sandro Ridella, Davide Anguita:
Improving the Union Bound: a Distribution Dependent Approach. ESANN 2020: 423-428
2010 – 2019
- 2019
- [j54]Luca Oneto, Sandro Ridella, Davide Anguita:
Local Rademacher Complexity Machine. Neurocomputing 342: 24-32 (2019) - 2018
- [j53]Luca Oneto, Francesca Cipollini, Sandro Ridella, Davide Anguita:
Randomized learning: Generalization performance of old and new theoretically grounded algorithms. Neurocomputing 298: 21-33 (2018) - [j52]Luca Oneto, Nicolò Navarin, Michele Donini, Sandro Ridella, Alessandro Sperduti, Fabio Aiolli, Davide Anguita:
Learning With Kernels: A Local Rademacher Complexity-Based Analysis With Application to Graph Kernels. IEEE Trans. Neural Networks Learn. Syst. 29(10): 4660-4671 (2018) - [c42]Luca Oneto, Sandro Ridella, Davide Anguita:
Local Rademacher Complexity Machine. ESANN 2018 - 2017
- [j51]Luca Oneto, Sandro Ridella, Davide Anguita:
Differential privacy and generalization: Sharper bounds with applications. Pattern Recognit. Lett. 89: 31-38 (2017) - [c41]Luca Oneto, Sandro Ridella, Davide Anguita:
Generalization Performances of Randomized Classifiers and Algorithms built on Data Dependent Distributions. ESANN 2017 - 2016
- [j50]Luca Oneto, Sandro Ridella, Davide Anguita:
Tikhonov, Ivanov and Morozov regularization for support vector machine learning. Mach. Learn. 103(1): 103-136 (2016) - [j49]Luca Oneto, Davide Anguita, Sandro Ridella:
A local Vapnik-Chervonenkis complexity. Neural Networks 82: 62-75 (2016) - [j48]Luca Oneto, Alessandro Ghio, Sandro Ridella, Davide Anguita:
Global Rademacher Complexity Bounds: From Slow to Fast Convergence Rates. Neural Process. Lett. 43(2): 567-602 (2016) - [j47]Luca Oneto, Davide Anguita, Sandro Ridella:
PAC-bayesian analysis of distribution dependent priors: Tighter risk bounds and stability analysis. Pattern Recognit. Lett. 80: 200-207 (2016) - [j46]Luca Oneto, Sandro Ridella, Davide Anguita:
Learning Hardware-Friendly Classifiers Through Algorithmic Stability. ACM Trans. Embed. Comput. Syst. 15(2): 23:1-23:29 (2016) - [c40]Luca Oneto, Sandro Ridella, Davide Anguita:
Tuning the Distribution Dependent Prior in the PAC-Bayes Framework based on Empirical Data. ESANN 2016 - 2015
- [j45]Luca Oneto, Alessandro Ghio, Sandro Ridella, Davide Anguita:
Learning Resource-Aware Classifiers for Mobile Devices: From Regularization to Energy Efficiency. Neurocomputing 169: 225-235 (2015) - [j44]Luca Oneto, Alessandro Ghio, Sandro Ridella, Davide Anguita:
Local Rademacher Complexity: Sharper risk bounds with and without unlabeled samples. Neural Networks 65: 115-125 (2015) - [j43]Luca Oneto, Alessandro Ghio, Sandro Ridella, Davide Anguita:
Fully Empirical and Data-Dependent Stability-Based Bounds. IEEE Trans. Cybern. 45(9): 1913-1926 (2015) - [c39]Luca Oneto, Alessandro Ghio, Sandro Ridella, Davide Anguita:
Shrinkage learning to improve SVM with hints. IJCNN 2015: 1-9 - [c38]Luca Oneto, Alessandro Ghio, Sandro Ridella, Davide Anguita:
Support vector machines and strictly positive definite kernel: The regularization hyperparameter is more important than the kernel hyperparameters. IJCNN 2015: 1-4 - [c37]Luca Oneto, Alessandro Ghio, Sandro Ridella, Davide Anguita:
Fast convergence of extended Rademacher Complexity bounds. IJCNN 2015: 1-10 - 2014
- [j42]Davide Anguita, Alessandro Ghio, Luca Oneto, Sandro Ridella:
Unlabeled patterns to tighten Rademacher complexity error bounds for kernel classifiers. Pattern Recognit. Lett. 37: 210-219 (2014) - [j41]Davide Anguita, Alessandro Ghio, Luca Oneto, Sandro Ridella:
A Deep Connection Between the Vapnik-Chervonenkis Entropy and the Rademacher Complexity. IEEE Trans. Neural Networks Learn. Syst. 25(12): 2202-2211 (2014) - [c36]Davide Anguita, Alessandro Ghio, Luca Oneto, Sandro Ridella:
Learning with few bits on small-scale devices: From regularization to energy efficiency. ESANN 2014 - [c35]Luca Oneto, Alessandro Ghio, Sandro Ridella, Jorge Luis Reyes-Ortiz, Davide Anguita:
Out-of-Sample Error Estimation: The Blessing of High Dimensionality. ICDM Workshops 2014: 637-644 - [c34]Davide Anguita, Alessandro Ghio, Luca Oneto, Sandro Ridella:
Smartphone battery saving by bit-based hypothesis spaces and local Rademacher Complexities. IJCNN 2014: 3916-3921 - 2013
- [j40]Davide Anguita, Luca Ghelardoni, Alessandro Ghio, Sandro Ridella:
A Survey of old and New Results for the Test Error Estimation of a Classifier. J. Artif. Intell. Soft Comput. Res. 3(4): 229 (2013) - [j39]Luca Oneto, Alessandro Ghio, Davide Anguita, Sandro Ridella:
An improved analysis of the Rademacher data-dependent bound using its self bounding property. Neural Networks 44: 107-111 (2013) - [c33]Davide Anguita, Alessandro Ghio, Luca Oneto, Sandro Ridella:
A Learning Machine with a Bit-Based Hypothesis Space. ESANN 2013 - [c32]Davide Anguita, Alessandro Ghio, Luca Oneto, Jorge Luis Reyes-Ortiz, Sandro Ridella:
A Novel Procedure for Training L1-L2 Support Vector Machine Classifiers. ICANN 2013: 434-441 - [c31]Davide Anguita, Alessandro Ghio, Luca Oneto, Sandro Ridella:
Some results about the Vapnik-Chervonenkis entropy and the rademacher complexity. IJCNN 2013: 1-8 - [c30]Davide Anguita, Alessandro Ghio, Luca Oneto, Sandro Ridella:
A support vector machine classifier from a bit-constrained, sparse and localized hypothesis space. IJCNN 2013: 1-10 - 2012
- [j38]Sergio Decherchi, Mauro Parodi, Sandro Ridella:
Learning the mean: A neural network approach. Neurocomputing 77(1): 129-143 (2012) - [j37]Davide Anguita, Alessandro Ghio, Luca Oneto, Sandro Ridella:
In-sample Model Selection for Trimmed Hinge Loss Support Vector Machine. Neural Process. Lett. 36(3): 275-283 (2012) - [j36]Davide Anguita, Alessandro Ghio, Luca Oneto, Sandro Ridella:
In-Sample and Out-of-Sample Model Selection and Error Estimation for Support Vector Machines. IEEE Trans. Neural Networks Learn. Syst. 23(9): 1390-1406 (2012) - [c29]Davide Anguita, Luca Ghelardoni, Alessandro Ghio, Luca Oneto, Sandro Ridella:
The 'K' in K-fold Cross Validation. ESANN 2012 - [c28]Davide Anguita, Alessandro Ghio, Luca Oneto, Sandro Ridella:
Structural Risk Minimization and Rademacher Complexity for Regression. ESANN 2012 - [c27]Alessandro Ghio, Davide Anguita, Luca Oneto, Sandro Ridella, Carlotta Schatten:
Nested Sequential Minimal Optimization for Support Vector Machines. ICANN (2) 2012: 156-163 - [c26]Luca Oneto, Davide Anguita, Alessandro Ghio, Sandro Ridella:
Rademacher Complexity and Structural Risk Minimization: An Application to Human Gene Expression Datasets. ICANN (2) 2012: 491-498 - 2011
- [j35]Davide Anguita, Alessandro Ghio, Sandro Ridella:
Maximal Discrepancy for Support Vector Machines. Neurocomputing 74(9): 1436-1443 (2011) - [j34]Davide Anguita, Luca Carlino, Alessandro Ghio, Sandro Ridella:
A FPGA Core Generator for Embedded Classification Systems. J. Circuits Syst. Comput. 20(2): 263-282 (2011) - [c25]Davide Anguita, Alessandro Ghio, Luca Oneto, Sandro Ridella:
Maximal Discrepancy vs. Rademacher Complexity for error estimation. ESANN 2011 - [c24]Davide Anguita, Luca Ghelardoni, Alessandro Ghio, Sandro Ridella:
Test error bounds for classifiers: A survey of old and new results. FOCI 2011: 80-87 - [c23]Davide Anguita, Alessandro Ghio, Luca Oneto, Sandro Ridella:
In-sample model selection for Support Vector Machines. IJCNN 2011: 1154-1161 - [c22]Davide Anguita, Alessandro Ghio, Luca Oneto, Sandro Ridella:
Selecting the hypothesis space for improving the generalization ability of Support Vector Machines. IJCNN 2011: 1169-1176 - [c21]Luca Oneto, Davide Anguita, Alessandro Ghio, Sandro Ridella:
The Impact of Unlabeled Patterns in Rademacher Complexity Theory for Kernel Classifiers. NIPS 2011: 585-593 - 2010
- [j33]Sergio Decherchi, Sandro Ridella, Rodolfo Zunino, Paolo Gastaldo, Davide Anguita:
Using unsupervised analysis to constrain generalization bounds for support vector classifiers. IEEE Trans. Neural Networks 21(3): 424-438 (2010) - [c20]Davide Anguita, Alessandro Ghio, Sandro Ridella:
Maximal Discrepancy for Support Vector Machines. ESANN 2010 - [c19]Davide Anguita, Alessandro Ghio, Noemi Greco, Luca Oneto, Sandro Ridella:
Model selection for support vector machines: Advantages and disadvantages of the Machine Learning Theory. IJCNN 2010: 1-8 - [c18]Sergio Decherchi, Mauro Parodi, Sandro Ridella:
A neural model approach for regularization in the mean estimation case. IJCNN 2010: 1-7
2000 – 2009
- 2009
- [c17]Davide Anguita, Alessandro Ghio, Sandro Ridella, Dario Sterpi:
K-Fold Cross Validation for Error Rate Estimate in Support Vector Machines. DMIN 2009: 291-297 - 2008
- [j32]Davide Anguita, Alessandro Ghio, Stefano Pischiutta, Sandro Ridella:
A support vector machine with integer parameters. Neurocomputing 72(1-3): 480-489 (2008) - [c16]Enrique Alba, Davide Anguita, Alessandro Ghio, Sandro Ridella:
Using Variable Neighborhood Search to improve the Support Vector Machine performance in embedded automotive applications. IJCNN 2008: 984-988 - 2007
- [c15]Davide Anguita, Alessandro Ghio, Stefano Pischiutta, Sandro Ridella:
A Hardware-friendly Support Vector Machine for Embedded Automotive Applications. IJCNN 2007: 1360-1364 - 2006
- [j31]Paolo Gastaldo, Sandro Ridella, Rodolfo Zunino:
Prospects of quantum-classical optimization for digital design. Appl. Math. Comput. 179(2): 581-595 (2006) - [j30]Davide Anguita, Stefano Pischiutta, Sandro Ridella, Dario Sterpi:
Feed-Forward Support Vector Machine Without Multipliers. IEEE Trans. Neural Networks 17(5): 1328-1331 (2006) - [c14]Davide Anguita, Sandro Ridella, Dario Sterpi:
Testing the Augmented Binary Multiclass SVM on Microarray Data. IJCNN 2006: 1966-1968 - 2004
- [j29]Sandro Ridella, Rodolfo Zunino:
Using K-Winner Machines for domain analysis. Neurocomputing 62: 367-388 (2004) - [c13]Davide Anguita, Sandro Ridella, Fabio Rivieccio:
An Algorithm for Reducing the Number of Support Vectors. WIRN 2004: 99-105 - 2003
- [j28]Davide Anguita, Sandro Ridella, Fabio Rivieccio, Rodolfo Zunino:
Hyperparameter design criteria for support vector classifiers. Neurocomputing 55(1-2): 109-134 (2003) - [j27]Davide Anguita, Sandro Ridella, Fabio Rivieccio, Rodolfo Zunino:
Quantum optimization for training support vector machines. Neural Networks 16(5-6): 763-770 (2003) - [j26]Davide Anguita, Andrea Boni, Sandro Ridella:
A digital architecture for support vector machines: theory, algorithm, and FPGA implementation. IEEE Trans. Neural Networks 14(5): 993-1009 (2003) - [j25]Massimiliano Bracco, Sandro Ridella, Rodolfo Zunino:
Digital implementation of hierarchical vector quantization. IEEE Trans. Neural Networks 14(5): 1072-1084 (2003) - 2002
- [c12]Davide Anguita, Sandro Ridella, Fabio Rivieccio, Rodolfo Zunino:
Automatic Hyperparameter Tuning for Support Vector Machines. ICANN 2002: 1345-1350 - 2001
- [j24]Sandro Ridella, Stefano Rovetta, Rodolfo Zunino:
K-winner machines for pattern classification. IEEE Trans. Neural Networks 12(2): 371-385 (2001) - [j23]Sandro Ridella, Rodolfo Zunino:
Empirical measure of multiclass generalization performance: the K-winner machine case. IEEE Trans. Neural Networks 12(6): 1525-1529 (2001) - 2000
- [j22]Davide Anguita, Andrea Boni, Sandro Ridella:
Digital VLSI Algorithms and Architectures for Support Vector Machines. Int. J. Neural Syst. 10(3): 159-170 (2000) - [j21]Davide Anguita, Andrea Boni, Sandro Ridella:
Evaluating the Generalization Ability of Support Vector Machines through the Bootstrap. Neural Process. Lett. 11(1): 51-58 (2000) - [c11]Sandro Ridella, Stefano Rovetta, Rodolfo Zunino:
The K-Winner Machine Model. IJCNN (1) 2000: 106-113 - [c10]Sandro Ridella, Stefano Rovetta, Rodolfo Zunino:
Augmenting vector quantization with interval arithmetics for image-coding applications. ISCAS 2000: 307-310
1990 – 1999
- 1999
- [j20]Gian Paolo Drago, Sandro Ridella:
Possibility and Necessity Pattern Classification using an Interval Arithmetic Perceptron. Neural Comput. Appl. 8(1): 40-52 (1999) - [j19]Sandro Ridella, Stefano Rovetta, Rodolfo Zunino:
Representation and generalization properties of class-entropy networks. IEEE Trans. Neural Networks 10(1): 31-47 (1999) - [j18]Davide Anguita, Sandro Ridella, Stefano Rovetta:
Worst case analysis of weight inaccuracy effects in multilayer perceptrons. IEEE Trans. Neural Networks 10(2): 415-418 (1999) - [j17]Sandro Ridella, Stefano Rovetta, Rodolfo Zunino:
Circular backpropagation networks embed vector quantization. IEEE Trans. Neural Networks 10(4): 972-975 (1999) - [c9]Davide Anguita, Andrea Boni, Sandro Ridella:
Support Vector Machines: A Comparison of Some Kernel Functions. IIA/SOCO 1999 - [c8]Davide Anguita, Andrea Boni, Sandro Ridella:
A VLSI friendly algorithm for support vector machines. IJCNN 1999: 939-942 - 1998
- [j16]Gian Paolo Drago, Sandro Ridella:
Pruning with interval arithmetic perceptron. Neurocomputing 18(1-3): 229-246 (1998) - [j15]Sandro Ridella, Stefano Rovetta, Rodolfo Zunino:
Plastic Algorithm for Adaptive Vector Quantisation. Neural Comput. Appl. 7(1): 37-51 (1998) - 1997
- [j14]Sandro Ridella, Stefano Rovetta, Rodolfo Zunino:
Circular backpropagation networks for classification. IEEE Trans. Neural Networks 8(1): 84-97 (1997) - [c7]Sandro Ridella, Stefano Rovetta, Rodolfo Zunino:
CBP networks as a generalized neural model. ICNN 1997: 210-214 - [c6]Fabio Ancona, Sandro Ridella, Stefano Rovetta, Rodolfo Zunino:
On the importance of sorting in "neural gas" training of vector quantizers. ICNN 1997: 1804-1808 - 1996
- [j13]Gian Paolo Drago, Sandro Ridella:
On the convergence of a growing topology neural algorithm. Neurocomputing 12(2-3): 171-185 (1996) - [c5]Davide Anguita, Sandro Ridella, Stefano Rovetta, Rodolfo Zunino:
Limiting the effects of weight errors in feedforward networks using interval arithmetic. ICNN 1996: 414-417 - 1995
- [j12]Gian Paolo Drago, Mauro Morando, Sandro Ridella:
An Adaptive Momentum Back Propagation (AMBP). Neural Comput. Appl. 3(4): 213-221 (1995) - [j11]Sandro Ridella, Stefano Rovetta, Rodolfo Zunino:
Adaptive Internal Representation in Circular Back-Propagation Networks. Neural Comput. Appl. 3(4): 222-333 (1995) - [c4]Sandro Ridella, Stefano Rovetta, Rodolfo Zunino:
Learning the appropriate representation paradigm by circular processing units. ESANN 1995 - 1994
- [j10]Sandro Ridella, Gian Luca Speroni, Paolo Trebino, Rodolfo Zunino:
Class-Entropy Minimisation Networks for Domain Analysis and Rule Extraction. Neural Comput. Appl. 2(1): 40-52 (1994) - [j9]Gian Paolo Drago, Sandro Ridella:
Convergence Properties of Cascade Correlation in Function Approximation. Neural Comput. Appl. 2(3): 142-147 (1994) - 1993
- [j8]Giancarlo Parodi, Sandro Ridella, Rodolfo Zunino:
Using chaos to generate keys for associative noise-like coding memories. Neural Networks 6(4): 559-572 (1993) - [c3]Sandro Ridella, Gian Luca Speroni, Paolo Trebino, Rodolfo Zunino:
Pruning and rule extraction using class entropy. ICNN 1993: 250-256 - 1992
- [j7]Marco Muselli, Sandro Ridella:
Global Optimization of Functions with the Interval Genetic Algorithm. Complex Syst. 6(3) (1992) - [j6]Alessandro De Gloria, Paolo Faraboschi, Sandro Ridella:
A dedicated massively parallel architecture for the Boltzmann machine. Parallel Comput. 18(1): 57-73 (1992) - [j5]Gian Paolo Drago, Sandro Ridella:
Statistically controlled activation weight initialization (SCAWI). IEEE Trans. Neural Networks 3(4): 627-631 (1992) - 1991
- [j4]Angelo Corana, Aldo Casaleggio, Claudia Rolando, Sandro Ridella:
Efficient computation of the correlation dimension from a time series on a LIW computer. Parallel Comput. 17(6-7): 809-820 (1991)
1980 – 1989
- 1989
- [j3]Angelo Corana, Claudio Martini, Sandro Ridella:
Corrigenda: "Minimizing Multimodal Functions of Continuous Variables with the 'Simulated Annealing' Algorithm". ACM Trans. Math. Softw. 15(3): 287 (1989) - 1988
- [j2]A. Corona, Claudio Martini, Mauro Morando, Sandro Ridella, Claudia Rolando:
Solving linear equation systems on vector computers with maximum efficiency. Parallel Comput. 8(1-3): 133-139 (1988) - 1987
- [j1]Angelo Corana, Michele Marchesi, Claudio Martini, Sandro Ridella:
Minimizing multimodal functions of continuous variables with the "simulated annealing" algorithm. ACM Trans. Math. Softw. 13(3): 262-280 (1987) - [c2]Angelo Corana, Claudio Martini, Sandro Ridella, Claudia Rolando:
LU Factorization with Maximum Performances on FPS Architectures 38/64 BIT. ICS 1987: 782-788 - 1986
- [c1]Claudio Martini, Mauro Morando, Sandro Ridella:
Caltech Hypercube MIMD Computer Performances Measurements in a Physical Mathematical Application. CONPAR 1986: 128-132
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-06-19 21:53 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint