default search action
Marco Virgolin
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j8]Mattias Wahde, Marco L. Della Vedova, Marco Virgolin, Minerva Suvanto:
An interpretable method for automated classification of spoken transcripts and written text. Evol. Intell. 17(1): 609-621 (2024) - [j7]Giorgia Nadizar, Luigi Rovito, Andrea De Lorenzo, Eric Medvet, Marco Virgolin:
An Analysis of the Ingredients for Learning Interpretable Symbolic Regression Models with Human-in-the-loop and Genetic Programming. ACM Trans. Evol. Learn. Optim. 4(1): 5:1-5:30 (2024) - 2023
- [j6]Marco Virgolin, Saverio Fracaros:
On the robustness of sparse counterfactual explanations to adverse perturbations. Artif. Intell. 316: 103840 (2023) - [j5]Mattias Wahde, Marco Virgolin:
DAISY: An Implementation of Five Core Principles for Transparent and Accountable Conversational AI. Int. J. Hum. Comput. Interact. 39(9): 1856-1873 (2023) - [c16]Joe Harrison, Marco Virgolin, Tanja Alderliesten, Peter A. N. Bosman:
Mini-Batching, Gradient-Clipping, First- versus Second-Order: What Works in Gradient-Based Coefficient Optimisation for Symbolic Regression? GECCO 2023: 1127-1136 - [c15]Pierre-Alexandre Kamienny, Guillaume Lample, Sylvain Lamprier, Marco Virgolin:
Deep Generative Symbolic Regression with Monte-Carlo-Tree-Search. ICML 2023: 15655-15668 - [i21]Pierre-Alexandre Kamienny, Guillaume Lample, Sylvain Lamprier, Marco Virgolin:
Deep Generative Symbolic Regression with Monte-Carlo-Tree-Search. CoRR abs/2302.11223 (2023) - [i20]Fabrício Olivetti de França, Marco Virgolin, Michael Kommenda, Maimuna S. Majumder, Miles D. Cranmer, Guilherme Espada, Leon Ingelse, Alcides Fonseca, Mikel Landajuela, Brenden K. Petersen, Ruben Glatt, T. Nathan Mundhenk, C. S. Lee, Jacob D. Hochhalter, David L. Randall, P. Kamienny, H. Zhang, Grant Dick, A. Simon, Bogdan Burlacu, Jaan Kasak, Meera Vieira Machado, Casper Wilstrup, William G. La Cava:
Interpretable Symbolic Regression for Data Science: Analysis of the 2022 Competition. CoRR abs/2304.01117 (2023) - 2022
- [j4]Marco Virgolin, Solon P. Pissis:
Symbolic Regression is NP-hard. Trans. Mach. Learn. Res. 2022 (2022) - [c14]Thomas Uriot, Marco Virgolin, Tanja Alderliesten, Peter A. N. Bosman:
On genetic programming representations and fitness functions for interpretable dimensionality reduction. GECCO 2022: 458-466 - [c13]Dazhuang Liu, Marco Virgolin, Tanja Alderliesten, Peter A. N. Bosman:
Evolvability degeneration in multi-objective genetic programming for symbolic regression. GECCO 2022: 973-981 - [c12]Marco Virgolin, Peter A. N. Bosman:
Coefficient mutation in the gene-pool optimal mixing evolutionary algorithm for symbolic regression. GECCO Companion 2022: 2289-2297 - [i19]Marco Virgolin, Saverio Fracaros:
On the Robustness of Counterfactual Explanations to Adverse Perturbations. CoRR abs/2201.09051 (2022) - [i18]Mattias Wahde, Marco Virgolin:
Conversational Agents: Theory and Applications. CoRR abs/2202.03164 (2022) - [i17]Marco Virgolin, Andrea De Lorenzo, Tanja Alderliesten, Peter A. N. Bosman:
Adults as Augmentations for Children in Facial Emotion Recognition with Contrastive Learning. CoRR abs/2202.05187 (2022) - [i16]Dazhuang Liu, Marco Virgolin, Tanja Alderliesten, Peter A. N. Bosman:
Evolvability Degeneration in Multi-Objective Genetic Programming for Symbolic Regression. CoRR abs/2202.06983 (2022) - [i15]Thomas Uriot, Marco Virgolin, Tanja Alderliesten, Peter A. N. Bosman:
On genetic programming representations and fitness functions for interpretable dimensionality reduction. CoRR abs/2203.00528 (2022) - [i14]Marco Virgolin, Eric Medvet, Tanja Alderliesten, Peter A. N. Bosman:
Less is More: A Call to Focus on Simpler Models in Genetic Programming for Interpretable Machine Learning. CoRR abs/2204.02046 (2022) - [i13]Marco Virgolin, Peter A. N. Bosman:
Coefficient Mutation in the Gene-pool Optimal Mixing Evolutionary Algorithm for Symbolic Regression. CoRR abs/2204.12159 (2022) - [i12]Marco Virgolin, Solon P. Pissis:
Symbolic Regression is NP-hard. CoRR abs/2207.01018 (2022) - 2021
- [j3]Marco Virgolin, Tanja Alderliesten, Cees Witteveen, Peter A. N. Bosman:
Improving Model-Based Genetic Programming for Symbolic Regression of Small Expressions. Evol. Comput. 29(2): 211-237 (2021) - [c11]Mattias Wahde, Marco Virgolin:
The five Is: Key principles for interpretable and safe conversational AI. CIIS 2021: 50-54 - [c10]Tom Den Ottelander, Arkadiy Dushatskiy, Marco Virgolin, Peter A. N. Bosman:
Local Search is a Remarkably Strong Baseline for Neural Architecture Search. EMO 2021: 465-479 - [c9]Marco Virgolin:
Genetic programming is naturally suited to evolve bagging ensembles. GECCO 2021: 830-839 - [c8]Marco Virgolin, Andrea De Lorenzo, Francesca Randone, Eric Medvet, Mattias Wahde:
Model learning with personalized interpretability estimation (ML-PIE). GECCO Companion 2021: 1355-1364 - [c7]Marco Virgolin, Mauro Bellone, Krister Wolff, Mattias Wahde:
A Mobile Interactive Robot for Social Distancing in Hospitals. IRC 2021: 87-91 - [c6]William G. La Cava, Patryk Orzechowski, Bogdan Burlacu, Fabrício Olivetti de França, Marco Virgolin, Ying Jin, Michael Kommenda, Jason H. Moore:
Contemporary Symbolic Regression Methods and their Relative Performance. NeurIPS Datasets and Benchmarks 2021 - [i11]Marco Virgolin, Andrea De Lorenzo, Francesca Randone, Eric Medvet, Mattias Wahde:
Model Learning with Personalized Interpretability Estimation (ML-PIE). CoRR abs/2104.06060 (2021) - [i10]William G. La Cava, Patryk Orzechowski, Bogdan Burlacu, Fabrício Olivetti de França, Marco Virgolin, Ying Jin, Michael Kommenda, Jason H. Moore:
Contemporary Symbolic Regression Methods and their Relative Performance. CoRR abs/2107.14351 (2021) - [i9]Mattias Wahde, Marco Virgolin:
The five Is: Key principles for interpretable and safe conversational AI. CoRR abs/2108.13766 (2021) - [i8]Arkadiy Dushatskiy, Marco Virgolin, Anton Bouter, Dirk Thierens, Peter A. N. Bosman:
Parameterless Gene-pool Optimal Mixing Evolutionary Algorithms. CoRR abs/2109.05259 (2021) - 2020
- [b1]Marco Virgolin:
Design and Application of Gene-pool Optimal Mixing Evolutionary Algorithms for Genetic Programming. Delft University of Technology, Netherlands, 2020 - [j2]Marco Virgolin, Tanja Alderliesten, Peter A. N. Bosman:
On explaining machine learning models by evolving crucial and compact features. Swarm Evol. Comput. 53: 100640 (2020) - [c5]Marco Virgolin, Andrea De Lorenzo, Eric Medvet, Francesca Randone:
Learning a Formula of Interpretability to Learn Interpretable Formulas. PPSN (2) 2020: 79-93 - [i7]Marco Virgolin, Ziyuan Wang, Brian V. Balgobind, Irma W. E. M. van Dijk, Jan Wiersma, Petra S. Kroon, Geert O. R. Janssens, Marcel van Herk, D. C. Hodgson, L. Zadravec Zaletel, C. R. N. Rasch, Arjan Bel, Peter A. N. Bosman, Tanja Alderliesten:
Surrogate-free machine learning-based organ dose reconstruction for pediatric abdominal radiotherapy. CoRR abs/2002.07161 (2020) - [i6]Tom Den Ottelander, Arkadiy Dushatskiy, Marco Virgolin, Peter A. N. Bosman:
Local Search is a Remarkably Strong Baseline for Neural Architecture Search. CoRR abs/2004.08996 (2020) - [i5]Marco Virgolin, Andrea De Lorenzo, Eric Medvet, Francesca Randone:
Learning a Formula of Interpretability to Learn Interpretable Formulas. CoRR abs/2004.11170 (2020) - [i4]Marco Virgolin:
Simple Simultaneous Ensemble Learning in Genetic Programming. CoRR abs/2009.06037 (2020)
2010 – 2019
- 2019
- [c4]Marco Virgolin, Tanja Alderliesten, Peter A. N. Bosman:
Linear scaling with and within semantic backpropagation-based genetic programming for symbolic regression. GECCO 2019: 1084-1092 - [i3]Marco Virgolin, Tanja Alderliesten, Cees Witteveen, Peter A. N. Bosman:
A Model-based Genetic Programming Approach for Symbolic Regression of Small Expressions. CoRR abs/1904.02050 (2019) - [i2]Marco Virgolin, Tanja Alderliesten, Peter A. N. Bosman:
On Explaining Machine Learning Models by Evolving Crucial and Compact Features. CoRR abs/1907.02260 (2019) - [i1]Marco Virgolin, Ziyuan Wang, Tanja Alderliesten, Peter A. N. Bosman:
Machine learning for automatic construction of pseudo-realistic pediatric abdominal phantoms. CoRR abs/1909.03723 (2019) - 2018
- [j1]Eric Medvet, Marco Virgolin, Mauro Castelli, Peter A. N. Bosman, Ivo Gonçalves, Tea Tusar:
Unveiling evolutionary algorithm representation with DU maps. Genet. Program. Evolvable Mach. 19(3): 351-389 (2018) - [c3]Marco Virgolin, Tanja Alderliesten, Arjan Bel, Cees Witteveen, Peter A. N. Bosman:
Symbolic regression and feature construction with GP-GOMEA applied to radiotherapy dose reconstruction of childhood cancer survivors. GECCO 2018: 1395-1402 - 2017
- [c2]Marco Virgolin, Tanja Alderliesten, Cees Witteveen, Peter A. N. Bosman:
Scalable genetic programming by gene-pool optimal mixing and input-space entropy-based building-block learning. GECCO 2017: 1041-1048 - 2015
- [c1]Alberto Bartoli, Andrea De Lorenzo, Eric Medvet, Fabiano Tarlao, Marco Virgolin:
Evolutionary Learning of Syntax Patterns for Genic Interaction Extraction. GECCO 2015: 1183-1190
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-05-08 21:48 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint