default search action
9th NTCIR 2011: Tokyo, Japan
- Noriko Kando, Daisuke Ishikawa, Miho Sugimoto:
Proceedings of the 9th NTCIR Workshop Meeting on Evaluation of Information Access Technologies: Information Retrieval, Question Answering and Cross-Lingual Information Access, NTCIR-9, National Center of Sciences, Tokyo, Japan, December 6-9, 2011. National Institute of Informatics (NII) 2011, ISBN 978-4-86049-056-0
Preface
- Noriko Kando, Tsuneaki Kato, Eiichiro Sumita:
Preface from NTCIR-9 General Chairs.
Overview
- Tetsuya Sakai, Hideo Joho:
Overview of NTCIR-9.
Keynote
- Jun'ichi Tsujii:
Natural Language Understanding, Semantic-based Information Retrieval and Knowledge Management.
GeoTime
- Fredric C. Gey, Ray R. Larson, Jorge Machado, Masaharu Yoshioka:
NTCIR9-GeoTime Overview - Evaluating Geographic and Temporal Search: Round 2. - Christopher G. Harris:
The Use of Inference Network Models in NTCIR-9 GeoTime. - Yoonjae Jeong, Gwan Jang, Kyung-Min Kim, Sung-Hyon Myaeng:
Geo-temporal Information Retrieval Based on Semantic Role Labeling and Rank Aggregation. - Kazuaki Kishida, Ikuko Matsushita:
Modification of Vocabulary-based Re-ranking for Geographic and Temporal Searching at NTCIR GeoTime Task. - Ray R. Larson:
Probabilistic Text Retrieval for NTCIR9 GeoTime. - Jorge Machado, José Borbinha, Bruno Martins:
Geo-Temporal retrieval filtering versus answer resolution using Wikipedia. - José M. Perea-Ortega, Miguel Ángel García Cumbreras, Manuel García Vega, Luis Alfonso Ureña López:
SINAI at NTCIR-9 GeoTime: a filtering and reranking approach based solely on geographical entities. - Fernando Samuel Peregrino, David Tomás, Fernando Llopis Pascual:
University of Alicante at NTCIR-9 GeoTime. - Takashi Sato:
NTCIR-9 GeoTime at Osaka Kyoiku University - Toward Automatic Extraction of Place/Time Terms -. - Xiaolin Wang, Hai Zhao, Bao-Liang Lu:
GeoTime Retrieval through Passage-based Learning to Rank. - Michiko Yasukawa, J. Shane Culpepper, Falk Scholer, Matthias Petri:
RMIT and Gunma University at NTCIR-9 GeoTime Task. - Masaharu Yoshioka:
ABRIR at NTCIR-9 GeoTime Task Usage of Wikipedia and GeoNames for Handling Named Entity Information.
INTENT
- Ruihua Song, Min Zhang, Tetsuya Sakai, Makoto P. Kato, Yiqun Liu, Miho Sugimoto, Qinglei Wang, Naoki Orii:
Overview of the NTCIR-9 INTENT Task. - Shuai Zhang, Kai Lu, Bin Wang:
ICTIR Subtopic Mining System at NTCIR-9 INTENT Task. - Rodrygo L. T. Santos, Craig Macdonald, Iadh Ounis:
University of Glasgow at the NTCIR-9 Intent task: Experiments with Terrier on Subtopic Mining and Document Ranking. - Jialong Han, Qinglei Wang, Naoki Orii, Zhicheng Dou, Tetsuya Sakai, Ruihua Song:
Microsoft Research Asia at the NTCIR-9 Intent Task. - Yufei Xue, Fei Chen, Tong Zhu, Chao Wang, Zhichao Li, Yiqun Liu, Min Zhang, Yijiang Jin, Shaoping Ma:
THUIR at NTCIR-9 INTENT Task. - Chieh-Jen Wang, Yung-Wei Lin, Ming-Feng Tsai, Hsin-Hsi Chen:
NTU Approaches to Subtopic Mining and Document Ranking at NTCIR-9 Intent Task. - Se-Jong Kim, Hwidong Na, Jong-Hyeok Lee:
The KLE's Subtopic Mining System for the NTCIR-9 INTENT Task. - Haitao Yu, Fuji Ren, Song Liu:
Qualifier Mining for NTCIR-INTENT. - Michiko Yasukawa, J. Shane Culpepper, Falk Scholer, Matthias Petri:
RMIT and Gunma University at NTCIR-9 Intent Task. - Xiaolin Wang, Hai Zhao, Bao-Liang Lu:
Redundancy Removal to Selectively Diversify Information Retrieval Results. - John A. Akinyemi, Charles L. A. Clarke:
UWaterloo at NTCIR-9: Intent discovery with anchor text. - Wei Song, Yu Zhang, Handong Gao, Ting Liu, Sheng Li:
HITSCIR System in NTCIR-9 Subtopic Mining Task. - Wei-Lun Xiao, Shih-Hung Wu, Liang-Pu Chen, Tsun Ku:
The Report on Subtopic Mining and Document Ranking of NTCIR-9 Intent Task. - Xue Jiang, Xianpei Han, Le Sun:
ISCAS at Subtopic Mining Task in NTCIR9. - Dan Zhu, Jianwei Cui, Jun He, Xiaoyong Du, Hongyan Liu:
Mining Search Subtopics from Query Logs. - Dongqing Xiao, Haoliang Qi, Jingbin Gao, Zhongyuan Han, Muyun Yang, Sheng Li:
HIT2 Joint NLP Lab at the NTCIR-9 Intent Task. - Tetsuya Sakai, Makoto P. Kato, Young-In Song:
Overview of NTCIR-9 1CLICK. - Makoto P. Kato, Meng Zhao, Kosetsu Tsukuda, Yoshiyuki Shoji, Takehiro Yamamoto, Hiroaki Ohshima, Katsumi Tanaka:
Information Extraction based Approach for the NTCIR-9 1CLICK Task. - Hajime Morita, Takuya Makino, Tetsuya Sakai, Hiroya Takamura, Manabu Okumura:
TTOKU Summarization Based Systems at NTCIR-9 1CLICK task. - Naoki Orii, Young-In Song, Tetsuya Sakai:
Microsoft Research Asia at the NTCIR-9 1CLICK Task.
SpokenDoc
- Tomoyosi Akiba, Hiromitsu Nishizaki, Kiyoaki Aikawa, Tatsuya Kawahara, Tomoko Matsui:
Overview of the IR for Spoken Documents Task in NTCIR-9 Workshop. - Hiromitsu Nishizaki, Yuto Furuya, Satoshi Natori, Yoshihiro Sekiguchi:
Spoken Term Detection Using Multiple Speech Recognizers' Outputs at NTCIR-9 SpokenDoc STD subtask. - Keisuke Iwami, Seiichi Nakagawa:
High speed spoken term detection by combination of n-gram array of a syllable lattice and LVCSR result for NTCIR-SpokenDoc. - Satoru Tsuge, Hiromasa Ohashi, Norihide Kitaoka, Kazuya Takeda, Kenji Kita:
Spoken document retrieval method combining query expansion with continuous syllable recognition for NTCIR-SpokenDoc. - Maria Eskevich, Gareth J. F. Jones:
DCU at the NTCIR-9 SpokenDoc Passage Retrieval Task. - Kiichi Hasegawa, Hideki Sekiya, Masanori Takehara, Taro Niinomi, Satoshi Tamura, Satoru Hayamizu:
Toward improvement of SDR accuracy using LDA and query expansion for SpokenDoc. - Taisuke Kaneko, Tomoko Takigami, Tomoyosi Akiba:
STD based on Hough Transform and SDR using STD results: Experiments at NTCIR-9 SpokenDoc. - Kouichi Katsurada, Koudai Katsuura, Yurie Iribe, Tsuneo Nitta:
Utilization of Suffix Array for Quick STD and Its Evaluation on the NTCIR-9 SpokenDoc Task. - Hiroaki Nanjo, Kazuyuki Noritake, Takehiko Yoshimi:
Spoken Document Retrieval Experiments for SpokenDoc at Ryukoku University (RYSDT). - Hiroyuki Saito, Takuya Nakano, Shiro Narumi, Toshiaki Chiba, Kazuma Konno, Yoshiaki Itoh:
An STD system for OOV query terms using various subword units. - Yoichi Yamashita, Toru Matsunaga, Kook Cho:
YLAB@RU at Spoken Term Detection Task in NTCIR-9.
RITE
- Hideki Shima, Hiroshi Kanayama, Cheng-Wei Lee, Chuan-Jie Lin, Teruko Mitamura, Yusuke Miyao, Shuming Shi, Koichi Takeda:
Overview of NTCIR-9 RITE: Recognizing Inference in TExt. - Minh Quang Nhat Pham, Le Minh Nguyen, Akira Shimazu:
A Machine Learning based Textual Entailment Recognition System of JAIST Team for NTCIR9 RITE. - Tomohide Shibata, Sadao Kurohashi:
Predicate-argument Structure based Textual Entailment Recognition System of KYOTO Team for NTCIR9 RITE. - Christopher G. Harris:
UIOWA at NTCIR-9 RITE: Using the Power of the Crowd to Establish Inference Rules. - Yaoyun Zhang, Jun Xu, Chenlong Liu, Xiaolong Wang, Ruifeng Xu, Qingcai Chen, Xuan Wang, Yongshuai Hou, Buzhou Tang:
ICRC_HITSZ at RITE: Leveraging Multiple Classifiers Voting for Textual Entailment Recognition. - Yasuhiro Akiba, Hirotoshi Taira, Sanae Fujita, Kaname Kasahara, Masaaki Nagata:
NTTCS Textual Entailment Recognition System for NTCIR-9 RITE. - Ling Cao, Xipeng Qiu, Xuanjing Huang:
FudanNLP at RITE 2011: a Shallow Semantic Approach to Textual Entailment. - Min-Yuh Day, Re-Yuan Lee, Cheng-Tai Liu, Chun Tu, Chin-Sheng Tseng, Loong Tern Yap, Allen-Green C. L. Huang, Yu-Hsuan Chiu, Wei-Ze Hong:
IMTKU Textual Entailment System for Recognizing Inference in Text at NTCIR-9 RITE. - Nai-Hsuan Han, Lun-Wei Ku:
The Yuntech System in NTCIR-9 RITE Task. - Hen-Hsen Huang, Kai-Chun Chang, James M. C. Haver II, Hsin-Hsi Chen:
NTU Textual Entailment System for NTCIR 9 RITE Task. - Chuan-Jie Lin, Bo-Yu Hsiao:
The Description of the NTOU RITE System in NTCIR-9. - Maofu Liu, Yan Li, Yu Xiao, Chunwei Lei:
WUST SVM-Based System at NTCIR-9 RITE Task. - Zhewei Mai, Yue Zhang, Donghong Ji:
Recognizing Text Entailment via Syntactic Tree Matching. - Partha Pakray, Snehasis Neogi, Sivaji Bandyopadhyay, Alexander F. Gelbukh:
A Textual Entailment System using Web based Machine Translation System. - Han Ren, Chen Lv, Donghong Ji:
The WHUTE System in NTCIR-9 RITE Task. - Cheng-Wei Shih, Cheng-Wei Lee, Ting-Hao Yang, Wen-Lian Hsu:
IASL RITE System at NTCIR-9. - Hideki Shima, Yuanpeng Li, Naoki Orii, Teruko Mitamura:
LTI's Textual Entailment Recognizer System at NTCIR-9 RITE. - Ranxu Su, Sheng Shang, Pan Wang, Haixu Liu, Yan Zheng:
ZSWSL Text Entailment Recognizing System at NTCIR-9 RITE Task. - Toru Sugimoto:
Experiments for NTCIR-9 RITE Task at Shibaura Institute of Technology. - Yuta Tsuboi, Hiroshi Kanayama, Masaki Ohno, Yuya Unno:
Syntactic Difference Based Approach for NTCIR-9 RITE Task. - Hiroshi Umemoto, Keigo Hattori:
Experiments of FX for NTCIR-9 RITE Japanese BC Subtask. - Yotaro Watanabe, Junta Mizuno, Eric Nichols, Katsuma Narisawa, Keita Nabeshima, Kentaro Inui:
TU Group at NTCIR9-RITE: Leveraging Diverse Lexical Resources for Recognizing Textual Entailment. - Shih-Hung Wu, Wan-Chi Huang, Liang-Pu Chen, Tsun Ku:
Binary-class and Multi-class Chinese Textural Entailment System Description in NTCIR-9 RITE. - Yu-Chieh Wu, Chung-Jung Lee, Yaw-Chu Chen:
MCU at NTCIR: A Resources Limited Chinese Textual Entailment Recognition System. - Xing Xu, Houfeng Wang:
ICL Participation at NTCIR-9 RITE.
CrossLink
- Ling-Xiang Tang, Shlomo Geva, Andrew Trotman, Yue Xu, Kelly Y. Itakura:
Overview of the NTCIR-9 Crosslink Task: Cross-lingual Link Discovery. - Pham Huy Anh, Takashi Yukawa:
Using Concept base and Wikipedia for Cross-Lingual Link Discovery. - Chun-Yuan Cheng, Yu-Chun Wang, Richard Tzong-Han Tsai:
IISR Crosslink Approach at NTCIR 9 CLLD Task. - Angela Fahrni, Vivi Nastase, Michael Strube:
HITS' Graph-based System at the NTCIR-9 Cross-lingual Link Discovery Task. - In-Su Kang, Ralph Marigomen:
English-to-Korean Cross-linking of Wikipedia Articles at KSLP. - Sin-Jae Kang:
Cross-lingual Link Discovery by Using Link Probability and Bilingual Dictionary. - Jungi Kim, Iryna Gurevych:
UKP at CrossLink: Anchor Text Translation for Cross-lingual Link Discovery. - Petr Knoth, Lukás Zilka, Zdenek Zdráhal:
KMI, The Open University at NTCIR-9 CrossLink: Cross-Lingual Link Discovery in Wikipedia Using Explicit Semantic Analysis. - Yi-Hsun Lee, Chung-Yao Chuang, Cen-Chieh Chen, Wen-Lian Hsu:
Discovering Links by Context Similarity and Translated Key Phrases for NTCIR9 CrossLink. - Maofu Liu, Le Kang, Shuang Yang, Hong Zhang:
WUST EN-CS Crosslink System at NTCIR-9 CLLD Task. - Ling-Xiang Tang, Daniel Cavanagh, Andrew Trotman, Shlomo Geva, Yue Xu, Laurianne Sitbon:
Automated Cross-lingual Link Discovery in Wikipedia. - Yingfan Gao, Hongjiao Xu, Junsheng Zhang, Huilin Wang:
Multi-filtering Method Based Cross-lingual Link Discovery.
VisEX
- Tsuneaki Kato, Mitsunori Matsushita, Hideo Joho:
Overview of the VisEx task at NTCIR-9. - Hideo Joho, Tetsuya Sakai:
Grid-based Interaction for NTCIR-9 VisEx Task. - Kazuhiro Tanaka, Daiki Hasui, Mitsunori Matsushita:
How Does a User Utilize Chart-based Interface to Conduct Exploratory Data Analysis? - Yasufumi Takama, Shunichi Hattori, Ryosuke Miyake:
Read Article Management in Document Search Process for NTCIR-9 VisEx Task. - Tsuneaki Kato:
Effects of the Variety of Document Retrieval Methods on Interactive Information Access - An Experiment in the NTCIR-9 VisEx Task -.
PatentMT
- Isao Goto, Bin Lu, Ka-Po Chow, Eiichiro Sumita, Benjamin K. Tsou:
Overview of the Patent Machine Translation Task at the NTCIR-9 Workshop. - Jeff Z. Ma, Spyros Matsoukas:
BBN's Systems for the Chinese-English Sub-task of the NTCIR-9 PatentMT Evaluation. - Katsuhito Sudoh, Kevin Duh, Hajime Tsukada, Masaaki Nagata, Xianchao Wu, Takuya Matsuzaki, Jun'ichi Tsujii:
NTT-UT Statistical Machine Translation in NTCIR-9 PatentMT. - Tong Xiao, Qiang Li, Qi Lu, Hao Zhang, Haibo Ding, Shujie Yao, Xiaoming Xu, Xiaoxu Fei, Jingbo Zhu, Feiliang Ren, Huizhen Wang:
The NiuTrans Machine Translation System for NTCIR-9 PatentMT. - Minwei Feng, Christoph Schmidt, Joern Wuebker, Stephan Peitz, Markus Freitag, Hermann Ney:
The RWTH Aachen System for NTCIR-9 PatentMT. - Young-Suk Lee, Bing Xiang, Bing Zhao, Martin Franz, Salim Roukos, Yaser Al-Onaizan:
IBM Chinese-to-English PatentMT System for NTCIR-9. - Tadaaki Oshio, Tomoharu Mitsuhashi, Tsuyoshi Kakita:
Use of the Japio Technical Field Dictionaries for NTCIR-PatentMT. - Holger Schwenk, Sadaf Abdul-Rauf:
LIUM's Statistical Machine Translation System for the NTCIR Chinese/English PatentMT. - Terumasa Ehara:
Machine translation system for patent documents combining rule-based translation and statistical post-editing applied to the PatentMT Task. - Wenhan Chao, Zhoujun Li:
ZZX_MT: the BeiHang MT System for NTCIR-9 PatentMT Task. - Yanqing He, Chongde Shi, Huilin Wang:
ISTIC Statistical Machine Translation System for Patent machine translation in NTCIR-9. - Junjie Jiang, Jinan Xu, Youfang Lin, Yujie Zhang:
System Description of BJTU-NLP SMT for NTCIR-9 PatentMT. - Shuhei Kondo, Mamoru Komachi, Yuji Matsumoto, Katsuhito Sudoh, Kevin Duh, Hajime Tsukada:
Learning of Linear Ordering Problems and its Application to J-E Patent Translation in NTCIR-9 PatentMT. - Jin'ichi Murakami, Masato Tokuhisa:
Statistical Machine Translation with Rule based Machine Translation. - Hwidong Na, Jinji Li, Se-Jong Kim, Jong-Hyeok Lee:
POSTECH's Statistical Machine Translation Systems for NTCIR-9 PatentMT Task (English-to-Japanese). - Toshiaki Nakazawa, Sadao Kurohashi:
EBMT System of KYOTO Team in PatentMT Task at NTCIR-9. - Yuen-Hsien Tseng, Chao-Lin Liu, Chia-Chi Tsai, Jui-Ping Wang, Yi-Hsuan Chuang, James Jeng:
Statistical Approaches to Patent Translation for PatentMT - Experiments with Various Settings of Training Data. - Xianchao Wu, Takuya Matsuzaki, Jun'ichi Tsujii:
SMT Systems in the University of Tokyo for NTCIR-9 PatentMT. - Hao Xiong, Linfeng Song, Fandong Meng, Yajuan Lü, Qun Liu:
The ICT's Patent MT System Description for NTCIR-9. - Zhongguang Zheng, Naisheng Ge, Yao Meng, Hao Yu:
HPB SMT of FRDC Assisted by Paraphrasing for the NTCIR-9 PatentMT. - Joseph Z. Chang, Ho-Ching Yen, Shih-Ting Huang, Ming-Zhuan Jiang, Chung-Chi Huang, Jason S. Chang, Ping-Che Yang:
[PatentMT] Summary Report of Team III_CYUT_NTHU.
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.